ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016014218
pages 465-476

FORCED CONVECTION HEAT TRANSFER OF NON-NEWTONIAN CROSS FLUID IN A SQUARE CAVITY

Jinhu Zhao
School of Mathematics and Statistics, Fuyang Normal College, Fuyang 236037, Anhui, China
Liancun Zheng
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Xinxin Zhang
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, University of Science and Technology Beijing, Beijing 100083, China

要約

A numerical research is presented for forced convection heat transfer of non-Newtonian fluid in a square cavity, which finds wide domestic and industrial applications. The Cross viscosity model is introduced in characterizing the constitutive relation of the fluid, as it cannot only be used to describe the power-law rheological behavior at high shear rate, but also be a good description of Newtonian rheological behavior near zero shear stress. The coupled equations are solved numerically using the finite-volume method. With fixed inlet and outlet, a total of 112 cases are performed with different Reynolds numbers, power-law coefficients, and indices. The results indicate that the dimensionless vertical velocity at the outlet decreases markedly and the fluid viscosity increases with augmentation of these parameters. Moreover, other effects of involved parameters on the transport characteristics of velocity and temperature fields are analyzed.


Articles with similar content:

LARGE EDDY SIMULATION APPLIED TO INTERNAL FORCED-CONVECTION COOLING OF GAS-TURBINE BLADES
International Heat Transfer Conference 11, Vol.18, 1998, issue
Akira Murata, Sadanari Mochizuki
VERTICAL MIXING OF MASS IN STABLY STRATIFIED CHANNEL FLOW WITH VERTICAL WALLS
TSFP DIGITAL LIBRARY ONLINE, Vol.3, 2003, issue
Sutanu Sarkar, Vincenzo Armenio
BRINKMAN FLOW IN AN ANNULAR REGION BETWEEN TWO COAXIAL TRANSLATING CYLINDERS FILLED WITH A POROUS MEDIUM
Special Topics & Reviews in Porous Media: An International Journal, Vol.8, 2017, issue 3
Vineet Kumar Verma, pawan kumar dixit
Oscillatory Flow and Heat Transfer in Two Immiscible Fluids
International Journal of Fluid Mechanics Research, Vol.31, 2004, issue 1
Abdul Mateen, Ali J. Chamkha, Jawali C. Umavathi
NUMERICAL INVESTIGATION OF HEAT TRANSFER OF MHD NANOFLUID OVER A VERTICAL CONE DUE TO VISCOUS-OHMIC DISSIPATION AND SLIP BOUNDARY CONDITIONS
Nanoscience and Technology: An International Journal, Vol.10, 2019, issue 2
Manoj Kumar, Ashish Mishra, Alok Kumar Pandey