ライブラリ登録: Guest
Heat Transfer Research

年間 18 号発行

ISSN 印刷: 1064-2285

ISSN オンライン: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

EFFECTS OF FRACTIONAL ORDER ON CONVECTIVE FLOW OF AN OLDROYD-B FLUID ALONG A MOVING POROUS HOT PLATE WITH THERMAL DIFFUSION

巻 48, 発行 12, 2017, pp. 1047-1068
DOI: 10.1615/HeatTransRes.2017016039
Get accessGet access

要約

Time-fractional convective flow over a dusty incompressible Oldroyd-B fluid over a moving infinite porous vertical plate is investigated in the presence of a heat source. At time t = 0+ the plate, whose temperature is time-variable, begins to move in its plane with a time-dependent velocity uwf(t). Exact solutions for dimensionless temperature and Nusselt number are determined using Laplace transforms. The influence of fractional parameter on the fluid temperature is graphically emphasized for small and large values of time. Its effects on the Nusselt number are also brought to light. The fluid velocity, as well as the dust particles velocity, are determined by combining the Laplace transform technique with the homotopy analysis method, and the Stehfest numerical algorithm is used for the inverse Laplace transform. As a check of the results, a closed form solution for the fluid velocity in the transformed domain is determined by both methods. Finally, the influence of fractional parameter and Prandtl number on the fluid and dust particles velocities is graphically underlined and discussed. Generally, in practical problems, these results can be used to determine suitable values for the fractional parameter so that the theoretical results to be in agreement with the experimental data.

によって引用された
  1. Abdullah Muhammad, Butt Asma Rashid, Raza Nauman, Heat transfer analysis of Walters’-B fluid with Newtonian heating through an oscillating vertical plate by using fractional Caputo–Fabrizio derivatives, Mechanics of Time-Dependent Materials, 23, 2, 2019. Crossref

  2. Javaid Maria, Imran M., Imran M. A., Khan I., Nisar K. S., Natural convection flow of a second grade fluid in an infinite vertical cylinder, Scientific Reports, 10, 1, 2020. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain