ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018026798
pages 617-632

NUMERICAL INVESTIGATION OF A COPPER—WATER NANOFLUID FLOWING IN A PARALLEL PLATE CHANNEL

Saeb Ragani
Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
Arian Bahrami
Aerodynamics Laboratory, Department of Mechanical Engineering, Eastern Mediterranean University, Northern Cyprus, Via Mersin 10, Turkey

要約

Heat transfer behavior of a Cu-water nanofluid flowing in a laminar mode in a parallel plate channel was investigated numerically. The governing continuity, momentum, and energy equations were discretized using the finite volume approach and solved with the SIMPLE algorithm. The thermal conductivity of the nanofluid was determined by the model proposed by Patel et al. and the Brinkman model was used to calculate the effective viscosity. The study was conducted for a wide range of Reynolds numbers from 10 to 1500, and for solid volume fractions between 0% and 5%. Top and bottom walls were considered for the cases of constant temperature and constant wall heat flux, while results for both uniform and parabolic entrance velocities were considered for each case. It was observed that the rate of heat transfer increases with increase in solid volume fraction as well as with increase in flow rate. Moreover, higher heat transfer was observed for uniform entrance velocity compared to that of a channel with parabolic inlet velocity.


Articles with similar content:

Numerical Analysis of Natural Convection in Porous Media: The Influence of Non-Darcian Terms and Thermal Dispersion
Journal of Porous Media, Vol.9, 2006, issue 3
Francisco Marcondes, Jose Mauricio Gurgel, Jesus Marlinaldo De Medeiros
NUMERICAL STUDY OF NANOPARTICLE ENHANCED HEAT TRANSFER IN A SOLAR THERMAL ENERGY STORAGE UNIT
Second Thermal and Fluids Engineering Conference, Vol.15, 2017, issue
Mohammad Parsazadeh, Xili Duan
NATURAL CONVECTION IN A SQUARE CAVITY FILLED WITH A NON-DARCY POROUS MEDIUM SATURATED WITH NANOFLUID BY THE BOUNDARY ELEMENT METHOD
Journal of Porous Media, Vol.20, 2017, issue 10
Renata Jecl, Janja Kramer Stajnko, Jure Ravnik
MIXED CONVECTIONOF ACOMPOSITE POROUS MEDIUM INA VERTICAL CHANNEL WITH ASYMMETRIC WALL HEATING CONDITIONS
Journal of Porous Media, Vol.13, 2010, issue 3
J. Prathap Kumar, Basavaraj M. Biradar, Jawali C. Umavathi
MELTING OF NANOPARTICLE-ENHANCED PHASE CHANGE MATERIAL IN A SHELL-AND-TUBE LATENT HEAT STORAGE UNIT HEATED BY LAMINAR PULSATING FLUID FLOW
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 4
Radouane Elbahjaoui, Hamid El Qarnia