ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v35.i12.50
10 pages

Experimental and Computational Investigation of the Hydrodynamics and Heat Transfer in a Flat Channel of Variable Width for Smooth and Intensified Surfaces

R. Banker
General Electric CR&D, USA
Mikhail Ya. Belenkiy
JSC "I. I. Polzunov Central Boiler and Turbine Institute" (NPO TsKTI), St. Petersburg, 195257, Russia
Mikhail Gotovskii
I. I. Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO TsKTI), 3/6 Atamanskaya Str., St. Petersburg, 191167, Russia
B. S. Fokin
JSC "I. I. Polzunov Central Boiler and Turbine Institute" (NPO TsKTI), St. Petersburg, 195257, Russia

要約

We present the results of experimental and computational investigation of the resistance and heat transfer in a flat channel of variable width with converging and diverging flows at rather small convergence (divergence) angles. The results were obtained for both smooth surfaces and surfaces with intensification by dimples. It is showed experimentally that for long channels, laminarization and flow instability effects appear even at angles of 1-2°. But there is a noticeable influence only on the resistance coefficient, whereas the behavior of heat transfer is almost the same as in the absence of acceleration for both smooth and intensified surface. The numerical analysis of convective heat transfer in a narrow converging channel with a package of 15 conical dimples on one of its sides generally confirmed the data obtained in physical experiments on the advanced increase in heat transfer as compared to hydraulic resistance. Vortex-type flow synchronization effect in dimples is established.


Articles with similar content:

ENHANCEMENT OF BOILING AND EVAPORATION ON STRUCTURED SURFACES WITH GRAVITY DRIVEN FILM FLOW OF R-11
International Heat Transfer Conference 7, Vol.9, 1982, issue
T. Nakajima, T. Daikoku, W. Nakayama
NUMERICAL INVESTIGATIONS OF THE CHARACTERISTICS OF HEAT TRANSFER ENHANCEMENT AND FLOW RESISTANCE IN A RECTANGULAR CHANNEL WITH WINGLETS
Heat Transfer Research, Vol.48, 2017, issue 2
Zeqiu Wu, Lianfa Yang, Zhongnan Tao
An Analysis of the Effect of the Footprint Orientation on the Heat Sink Performance during Flow Boiling in Micro-Scale Channels
International Heat Transfer Conference 15, Vol.16, 2014, issue
Hugo Leonardo Souza Lara Leão, Gherhardt Ribatski
THE CONNECTIVE HEAT TRANSFER FOR THE EXTENDED SURFACE WITH UNIFORM CROSS-SECTION IN A CHANNEL
International Heat Transfer Conference 11, Vol.5, 1998, issue
Bu-Xuan Wang, J. H. Du, Xiao-Feng Peng
FLOW BOILING HEAT TRANSFER OF R-600A/OIL INSIDE A HORIZONTAL SMOOTH TUBE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2014, issue
M. A. Akhavan-Behabadi, M. Nasr, Pedram Hanafizadeh, Mohammadreza Momenifar