ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018021519
pages 1559-1585

TURBULENT DECAYING SWIRLING FLOW IN A PIPE

V. Aghakashi
Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, Tehran, 11155-9567, Iran
Mohammad Hassan Saidi
Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, P.O. Box 11155-9567, Tehran, Iran

要約

In this work, a solution is applied to investigate the heat transfer characteristics in a pipe with turbulent decaying swirling flow by using the boundary layer integral scheme. The governing equation is solved using the forth-order Runge-Kutta scheme resulting in thermal boundary-layer thickness and dimensionless heat transfer coefficient, namely, the Nusselt number. Both forced- and free-vortex profiles are considered for the tangential velocity component. A comparison of the results obtained for the Nusselt number with available experimental data shows that this scheme has good capability in predicting the heat transfer parameters of swirling flow especially in the entrance region of a pipe. The results of the present work specify that in swirling flow, the forced-vortex velocity profile is more accurate in predicting the heat transfer coefficient as compared with the free-vortex one. Also, the effects of the inlet Reynolds number, inlet swirl intensity, and of the Prandtl number on the thermal boundary-layer thickness and Nusselt number are studied, and it is realized that the variation of these two parameters depends on the inlet Reynolds number, inlet swirl intensity, and the Prandtl number. The results show that increasing the inlet swirl intensity has a strong increasing effect on the heat transfer rate.


Articles with similar content:

COOLING OF A ROTATING DISK BY MEANS OF AN IMPINGING JET
International Heat Transfer Conference 7, Vol.6, 1982, issue
Zeljko Bogdan
CONVECTIVE, CONDUCTIVE AND RADIATIVE HEAT TRANSFER IN A TUBE SUBMITTED TO A NON UNIFORM CIRCUMFERENTIAL FLUX
International Heat Transfer Conference 7, Vol.6, 1982, issue
M. Debiane, Dominique Blay
MODELLING THE ENTRANCE REGION IN A PLANE ASYMMETRIC DIFFUSER BY ELLIPTIC RELAXATION
TSFP DIGITAL LIBRARY ONLINE, Vol.4, 2005, issue
Bjorn Anders Pettersson-Reif, Andreas Sveningsson, Lars Davidson
Direct Numerical Simulation of Turbulent Flow in a Rotating Pipe
International Heat Transfer Conference 12, Vol.10, 2002, issue
Miryem Ould-Rouis, Guy Lauriat, Amir-Ali Feiz
TURBULENT HEAT TRANSFER IN A SWIRL FLOW DOWNSTREAM OF AN ABRUPT PIPE EXPANSION
International Heat Transfer Conference 7, Vol.6, 1982, issue
Donald M. McEligot, M. A. Habib