ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014005630
pages 31-48

NUMERICAL SIMULATION OF CONVECTIVE HEAT TRANSFER AND PRESSURE DROP IN TWO TYPES OF LONGITUDINALLY AND INTERNALLY FINNED TUBES

Feng Wu
School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an 710069, China
Wenjing Zhou
Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

要約

With two kinds of methods of boundary condition treatment, three-dimensional turbulent flow and heat transfer problems in two types of internally finned tubes with a blocked core-tube have been studied numerically by the realizable k−ε model. The numerical simulation results obtained from two calculation models were compared with experimental data. It was found that the simulation results obtained from the turbulent flow model are closer to the experimental values than those obtained from the laminar flow model. Meanwhile, it has been found that the critical Reynolds number for the flow that develops in internally finned tubes from a laminar flow to a turbulent one is much less than the Reynolds number for traditional bare tubes. The calculation results also indicate that the periodical ridges inside the finned tubes change the distribution of the inner flow field and temperature profile. Unlike straight tubes, in internally finned tubes, a secondary vortex flow emerges that plays a definitely destructive role for the flow boundary layer and increases the turbulent kinetic energy of the flow field. With the field synergy principle, a contrasting analysis of the intensified heat exchange mechanism for internally finned tubes and a bare annular tube was performed quantitatively. The results show that the field synergy degree of longitudinally ridged and internally finned tubes is better than that of bare annular tubes, which enhance heat transfer.


Articles with similar content:

Field-Coordination Analysis and Numerical Study on Turbulent Convective Heat Transfer Enhancement
Journal of Enhanced Heat Transfer, Vol.12, 2005, issue 1
Zhi-Xin Li, Zeng-Yuan Guo, Ze-Jing Chen, Ji-An Meng
Heat Transfer Enhancement in a Narrow Concentric Annulus in Decaying Swirl Flow
Heat Transfer Research, Vol.42, 2011, issue 3
Ali M. Jawarneh
APPLICATION OF THE PRINCIPLE OF FAVORABLE INTERFERENCE TO INCREASE THE AERODYNAMIC PERFORMANCE OF THE PROPELLER AND WING CONFIGURATION
TsAGI Science Journal, Vol.47, 2016, issue 8
Myo Thein, Leonid Leonidovich Teperin, Oleg Valentinovich Kudryavtsev, Farid Orfinejad, Andrei Viktorovich Shustov, Ludmila Nikolaevna Teperina, Aleksandr Vyacheslavovich Kornushenko
GUEST EDITORIAL
Critical Reviews™ in Biomedical Engineering, Vol.26, 1998, issue 5-6
Subrata Saha
Two-Dimensional Vortical Gravity Waves near the Surface of a Deep Liquid
International Journal of Fluid Mechanics Research, Vol.23, 1996, issue 3&4
Yu. V. Sedletskiy, V. P. Lukomskiy