ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016015276
pages 827-848

NUMERICAL SIMULATION OF A BELLOWS-TYPE RECIPROCATING MECHANISM-DRIVEN HEAT LOOP (RMDHL)

Olubunmi T. Popoola
Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, USA
Soheil Soleimani
Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, USA
Yiding Cao
Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174

要約

A bellows-type Reciprocating Mechanism-Driven Heat Loop (RMDHL) could attain a high heat transfer rate through reciprocating flow of the working fluid inside a heat transfer device while maintaining substantial temperature uniformity over its evaporator section. The objective of this paper is to numerically simulate a bellows-type RMDHL to predict its operational performance under different working conditions as well as a conventional dynamic pump-driven heat loop (DPDHL) as a benchmark for comparison. The numerical results are also compared with relevant experimental data with good agreement. The results indicate that the bellows-type RMDHL can meaningfully reduce the peak temperature of an electronic device and result in a significantly more uniform temperature across the electronic device. Considering the advantage of coolant leakage free for electronics-related applications, the single-phase bellows-type RMDHL could be an alternative to a conventional Liquid Cooling System (LCS) for electronic cooling applications.


Articles with similar content:

EXPERIMENTAL INVESTIGATION OF A WASTE HEAT DRIVEN TURBO-COMPRESSION CHILLER
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.1, 2018, issue
Derek N. Young, Larry W. Gabbey, Michael J. Reinke, John R. Simon III, Jeff Noall, Ranga V. Sami, Alex M. Grauberger, Jeff Shull, Shane D. Garland, Robert Fuller, Kevin Eisemann, Todd M. Bandhauer
TRANSIENT VOID FRACTION PREDICTIONS AT ELEVATED PRESSURES IN ONCE-THROUGH INTEGRAL SYSTEM
International Heat Transfer Conference 8, Vol.5, 1986, issue
Yassin A. Hassan
DEVELOPMENT AND INVESTIGATION OF A COOLER FOR ELECTRONICS ON THE BASIS OF TWO-PHASE LOOP THERMOSYPHONS
Heat Pipe Science and Technology, An International Journal, Vol.1, 2010, issue 1
Yury F. Maydanik, Valery I. Dmitrin, Vladimir G. Pastukhov
Co-current Loop Thermosyphon with Active Working Fluid Management: Application for Water Recovery in Flue Gas
First Thermal and Fluids Engineering Summer Conference, Vol.6, 2015, issue
Wei Zhong, Tao He, Jon P. Longtin, Shanshan Huang
INVESTIGATION OF THE THERMAL PERFORMANCE OF SCREEN MESH WICK HEAT PIPES OPERATING IN MID-LEVEL TEMPERATURES
Heat Pipe Science and Technology, An International Journal, Vol.7, 2016, issue 3-4
Débora de O. Silva, Roger R. Riehl