ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018026700
pages 1163-1181

NUMERICAL EXAMINATION OF MHD NONLINEAR RADIATIVE SLIP MOTION OF NON-NEWTONIAN FLUID ACROSS A STRETCHING SHEET IN THE PRESENCE OF A POROUS MEDIUM

Kempannagari Anantha Kumar
Department of Mathematics, Sri Venkateswara University, Tirupati-517502, A.P., India; Department of Mathematics, Sri Venkateswara Engineering College, Karakambadi-517507, A.P., India
V. Sugunamma
Department of Mathematics, Sri Venkateswara University, Tirupati-517 502, India
N. Sandeep
Department of Mathematics, Central University of Karnataka, Kalaburagi-585 367, India
J. V. Ramana Reddy
Department of Mathematics, Sri Venkateswara University, Tirupati-517502, India; Department of Science and Humanities, Krishna Chaitanya Institute of Technology and Sciences, Markapur, India

要約

In this article, we examined the flow and heat transfer attributes of MHD natural convective micropolar fluid over a permeable stretching surface with second-order velocity slip. The flow is incompressible, time-independent, and laminar. The impacts of Joule heat, nonlinear radiation, and irregular heat sink/source are anticipated. The PDEs which govern the flow have been transformed as ODEs by the choice of similarity transformations. The transformed nonlinear ODEs are changed into linear ones by the well-known shooting method then solved numerically by the fourth-order Runge-Kutta method. The variations of the flow governing parameters with the dimensionless velocity, microrotation, temperature as well as the local Nusselt number, couple stress and skin friction coefficients are thoroughly elucidated with the assistance of graphs and tables. The findings reveal that the nonlinear radiation parameter and Eckert number have a tendency to enhance the thermal field. Also, fluid velocity and microrotation velocity are reducing functions of magnetic field and porosity parameters but an opposite trend is noticed for micropolar and buoyancy parameters.

参考

  1. Agarwal, R.S., Bhargava, R., and Balaji, A.V.S., Finite Element Solution of Flow and Heat Transfer of a Micropolar Fluid over a Stretching Sheet, Int. J. Eng. Sci., vol. 27, no. 11, pp. 1421-1428, 1989.

  2. Ahmad, K. and Ishak, A., Magnetohydrodynamic (MHD) Jeffrey Fluid over a Stretching Vertical Surface in a Porous Medium, Prop. Powder Res., vol. 6, no. 4, pp. 269-276, 2017.

  3. Aissa, W.A. and Mohammadein, A.S., Joule Heating Effects on a Micropolar Fluid past a Stretching Sheet with Variable Electric Conductivity, J. Comput. Appl. Mech., vol. 6, no. 1, pp. 3-13, 2005.

  4. Ananth, Dinesh, P.A., Sugunamma, V., and Sandeep, N., Effect of Nonlinear Thermal Radiation on Stagnation Flow of a Casson Fluid towards a Stretching Sheet, Ind. Eng. Lett., vol. 5, no. 8, pp. 70-79, 2015.

  5. Anantha Kumar, K., Reddy, J.V.R. Sugunamma, V., and Sandeep, N., Impact of Frictional Heating on MHD Radiative Ferrofluid past a Convective Shrinking Surface, Def. Diff. Forum, vol. 378, pp. 157-174, 2017.

  6. Anantha Kumar, K., Reddy, J.V.R., Sandeep, N., and Sugunamma, V. Influence of Thermal Radiation on Stagnation Flow towards a Stretching Sheet with Induced Magnetic Field, Adv. Phys. Theor. Appl., vol. 53, pp. 23-28, 2016.

  7. Anantha Kumar, K., Reddy, J.V.R., Sugunamma, V., and Sandeep, N., Simultaneous Solutions for MHD Flow of Williamson Fluid over a Curved Sheet with Non-Uniform Heat Source/Sink, Heat Transf. Res., 2018a. DOI: 10.1615/HeatTran-sRes.2018025939.

  8. Anantha Kumar, K., Reddy, J.V.R., Sugunamma, V., and Sandeep, N., Impact of Cross Diffusion on MHD Viscoelastic Fluid Flow past a Melting Surface with Exponential Heat Source, Multi. Mod. Mat. Str, vol. 14, no. 5, pp. 999-1016, 2018b.

  9. Anantha Kumar, K., Reddy, J.V.R., Sugunamma, V., and Sandeep, N., MHD Flow of Chemically Reacting Williamson Fluid over a Curved/Flat Surface with Variable Heat Source/Sink, Int. J. Fluid Mech. Res., 2018c. DOI: 10.1615/InterJFluid-MechRes.2018025940.

  10. Anantha Kumar, K., Sugunamma, V., and Sandeep, N., Impact of Non-Linear Radiation on MHD Non-Aligned Stagnation Point Flow of Micropolar Fluid over a Convective Surface, J. Non-Equil. Thermodyn., vol. 43, no. 4, pp. 327-345, 2018d.

  11. Andersson, H.I., Slip Flow past a Stretching Surface, Acta Mech., vol. 158, pp. 121-125, 2002.

  12. Ashwinkumar, G.P., Sulochana, C., and Samrat, S.P., Effect of the Aligned Magnetic Field on the Boundary Layer Analysis of Magnetic-Nanofluid over a Semi-Infinite Vertical Plate with Ferrous Nanoparticles, Multi. Model. Mat. Struct., 2018. DOI: 10.1108/MMMS-10-2017-0128.

  13. Beg, O.A., Uddin, M.J., Rashidi, M.M., and Kavyani, N., Double-Diffusive Radiative Magnetic Mixed Convective Slip Flow with Biot and Richardson Number Effects, J. Eng. Therm., vol. 23, pp. 79-97, 2014.

  14. Bhargava, R., Sharma, S., Takhar, H.S., Beg, O.A., and Bhargava, P., Numerical Solutions for Micropolar Transport Phenomena over a Nonlinear Stretching Sheet, Nonlinear Anal. Model. Control, vol. 12, no. 1, pp. 45-63, 2007.

  15. Chen, C.H., Combined Effects of Joule Heating and Viscous Dissipation on Magnetohydrodynamic Flow past a Permeable Stretching Surface with Free Convection and Radiative Heat Transfer, J. Heat Transf., vol. 132, no. 6, Article Id: 064503, 2010.

  16. Chiam, T.C., Micropolar Fluid Flow over a Stretching Sheet, ZAMM, vol. 62, pp. 565-568, 1982.

  17. Desseaux, A. and Kelson, N.A., Flow of a Micropolar Fluid Bounded by a Stretching Sheet, ANZIAM J., vol. 42, pp. C536-C560, 2000.

  18. Eringen, A.C., Theory of Micropolar Fluids, J. Math. Mech., vol. 16, pp. 1-18, 1966.

  19. Farooq, M., Khan, M.I., Waqas, M., Hayat, T., Alsaedi, A., and Khan, M.I., MHD Stagnation Point Flow of Viscoelastic Nano-fluid with Nonlinear Radiation Effects, J. Mol. Liq, vol. 221, pp. 1097-1103, 2016.

  20. Hayat, T., Javed, T., and Abbas, Z., MHD Flow of a Micropolar Fluid near a Stagnation-Point towards a Non-Linear Stretching Surface, Nonlinear Anal. Real World Appl., vol. 10, pp. 1514-1526, 2009.

  21. Hayat, T., Qasim, M., and Mesloub, S., MHD Flow and Heat Transfer over Permeable Stretching Sheet with Slip Conditions, Int. J. Numer. Meth. Fluids, vol. 66, pp. 963-975, 2010.

  22. Ibrahim, W., MHD Boundary Layer Flow and Heat Transfer of Micropolar Fluid past a Stretching Sheet with Second Order Slip, J. Braz. Soc. Mech. Sci. Eng., vol. 39, pp. 791-799, 2017.

  23. Kumar, K.A., Reddy, J.V.R., Sandeep, N., and Sugunamma, V., Dual Solutions for Thermo-Diffusion and Diffusion-Thermo Effects on 3D MHD Casson Fluid Flow over a Stretching Surface, Res. J. Phar. Tech., vol. 9, pp. 1187-1194, 2016.

  24. Kumar, K.A., Reddy, J.V.R., Sugunamma, V., and Sandeep, N. Magnetohydrodynamic Cattaneo-Christov Flow past a Cone and a Wedge with Variable Heat Source/Sink, Alexandria Eng. J., vol. 57, no. 1, pp. 435-443, 2018.

  25. Lakshmi, K.B., Anantha Kumar, K., Reddy, J.V.R., and Sugunamma, V., Influence of Nonlinear Radiation and Cross Diffusion on MHD Flow of Casson and Walters-B Nanofluids past a Variable Thickness Sheet, J. Nanofluids, vol. 8, no. 1, pp. 73-83, 2019.

  26. Lio, S. An Analytic Solution of Unsteady Boundary-Layer Flows Caused by an Impulsively Stretching Plate, Commun. Nonlinear Sci. Numer. Simul., vol. 11, no. 3, pp. 326-339, 2006.

  27. Mabood, F., Shafiq, A., Hayat, T., and Abelman, S., Radiation Effects on Stagnation Point Flow with Melting Heat Transfer and Second Order Slip, Res. Phs., vol. 7, pp. 31-42, 2017.

  28. Nadeem, S. and Lee, C., Boundary Layer Flow of Nanofluid over an Exponentially Stretching Surface, Nanoscale Res. Lett., vol. 7, no. 1, pp. 1-6, 2012.

  29. Nadeem, S. and Hussain, T., Heat Transfer Analysis of Williamson Fluid over Exponentially Stretching Surface, Appl. Math. Mech, vol. 35, pp. 489-502, 2014.

  30. Navier, C.L.M., Sur les Lois du Mouvement des Fluides, Mem. Acad. Royal Sci. Inst. Fr., vol. 6, pp. 389-440, 1827.

  31. Pal, D., Combined Effects of Non-Uniform Heat Source/Sink and Thermal Radiation on Heat Transfer over an Unsteady Stretching Permeable Surface, Commun. Nonlinear Sci. Numer. Simul., vol. 16, pp. 1890-1904, 2011.

  32. Ramachandran, P.S., Mathur, M.N., and Ojha, S.K., Heat Transfer in Boundary Layer Flow of a Micropolar Fluid past a Curved Surface with Suction And Injection, Int. J. Eng. Sci., vol. 17, no. 5, pp. 625-639, 1979.

  33. Ramadevi, B., Sugunamma, V., Anantha Kumar, K., and Reddy, J.V.R., MHD Flow of Carreau Fluid over a Variable Thickness Melting Surface Subject to Cattaneo-Christov Heat Flux, Multi. Model. Mater. Struc, 2018. DOI: 10.1108/MMMS-12- 2017-0169.

  34. Reddy, J.V.R., Kumar, K.A., Sugunamma, V., and Sandeep, N., Effect of Cross Diffusion on MHD Non-Newtonian Fluids Flow past a Stretching Sheet with Non-Uniform Heat Source/Sink: A Comparative Study, Alexandria Eng. J., vol. 57, no. 3, pp. 1829-1838, 2018.

  35. Samrat, S.P., Sulochana, C., and Ashwinkumar, G.P., Impact of Thermal Radiation and Chemical Reaction on Unsteady 2D Flow of Magnetic-Nanofluids over an Elongated Plate Embedded with Ferrous Nanoparticles, Front. Heat Mass Transf., vol. 10, 2018. DOI: 10.5098/hmt.10.31.

  36. Sandeep, N. and Sugunamma, V., Radiation and Inclined Magnetic Field Effects on Unsteady Hydromagnetic Free Convection Flow past an Impulsively Moving Vertical Plate in a Porous Medium, J. Appl. Fluid Mech., vol. 7, no. 2, pp. 275-286, 2014.

  37. Soid, S.K., Ishak, A., and Pop, I., Unsteady MHD Flow and Heat Transfer over a Shrinking Sheet with Omhic Heating, Chin. J. Phys, vol. 55, no. 4, pp. 1626-1636, 2017.

  38. Soundalgekar, V.M., Free Convection Effects on Steady MHD Flow past a Vertical Porous Plate, J. Fluid Mech., vol. 66, no. 3, pp. 541-551, 1984.

  39. Sulochana, C., Ashwinkumar, G.P., and Sandeep, N., Boundary Layer Analysis of Persistent Moving Horizontal Needle in Magnetohydrodynamic Ferrofluid: A Numerical Study, Alexandria Eng. J., 2017a. DOI: 10.1016/j.aej.2017.08.020.

  40. Sulochana, C., Ashwinkumar, G.P., and Sandeep, N., Joule Heating Effect on a Continuously Moving Thin Needle in MHD Sakiadis Flow with Thermophoresis and Brownian Moment, Euro. Phys. J. Plus, vol. 132, 2017b. DOI: 10.1140/epjp/i2017-11633-3.

  41. Sulochana, C. and Ashwinkumar, G.P., Impact of Brownian Moment and Thermophoresis on Magnetohydrodynamic Flow of Magnetic Nanofluid past an Elongated Sheet in the Presence of Thermal Diffusion, Multidis. Model. Mat. Struct., 2018. DOI: 10.1108/MMMS-12-2017-0168.

  42. Waqas, M., Farooq, M., Khan, M.I., Alsaedi, A., Hayat, T., and Yasmeen, T., Magnetohydrodynamic (MHD) Mixed Convective Flow of Micropolr Liquid Due to Non-Linear Stretched Sheet with Convective Condition, Int. J. Heat Mass Transf., vol. 102, pp. 762-772, 2016.