ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Porous Media
インパクトファクター: 1.49 5年インパクトファクター: 1.159 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN 印刷: 1091-028X
ISSN オンライン: 1934-0508

巻:
巻 22, 2019 巻 21, 2018 巻 20, 2017 巻 19, 2016 巻 18, 2015 巻 17, 2014 巻 16, 2013 巻 15, 2012 巻 14, 2011 巻 13, 2010 巻 12, 2009 巻 11, 2008 巻 10, 2007 巻 9, 2006 巻 8, 2005 巻 7, 2004 巻 6, 2003 巻 5, 2002 巻 4, 2001 巻 3, 2000 巻 2, 1999 巻 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v17.i5.50
pages 431-438

NEURAL-NETWORK METAMODELLING FOR THE PREDICTION OF THE PRESSURE DROP OF A FLUID PASSING THROUGH METALLIC POROUS MEDIUM

Eddy EL Tabach
PRISME Laboratory, University of Orleans, 63 Avenue de Lattre de Tassigny, 18000 Bourges, France
Nicolas Gascoin
PRISME Laboratory, INSA-Centre Val de Loire, 88 boulevard Lahitolle, 18000 Bourges, France
Philippe Gillard
PRISME, IUT Bourges, 63, avenue de Lattre de Tassigny, 18000 Bourges, France

要約

The pressure drop across metallic porous mediums is a critical element in cooling aerospace engineering applications. This paper presents a metamodel based on artificial neural networks (ANNs) for estimating the pressure drop through metallic porous media. The ANN is developed using experimental data obtained from an experimental bench, developed at PRISME Laboratory, which ensures the monitoring of temperature, pressure, and mass flow rate in stationary and transient conditions. For each case the gas pressure which crosses the metallic porous material is measured as a function of inlet gas pressure, gas mass flow rate, and temperature. The optimal feedforward ANN architecture with error backpropagation (BPNN) was determined by the cross-validation method. The ANN architecture having 35 hidden neurons gives the best choice. Comparing the modelled values by ANN with the experimental data indicates that the neural-network model provides accurate results. The performance of the ANN model is compared with a metamodelling method using the multilinear regression approximation.


Articles with similar content:

EXPERIMENTAL ANALYSIS METHOD OF THE TRANSIENT BURNING RATE OF SOLID PROPELLANT UNDER RAPID PRESSURE CHANGES
International Journal of Energetic Materials and Chemical Propulsion, Vol.13, 2014, issue 5
Boris S. Jankovski, Vladica Bozic
ANALYTICAL MODELING OF NEEDLE TEMPERATURE IN AN INDUSTRIAL SEWING MACHINE
Heat Transfer Research, Vol.49, 2018, issue 5
Nejlaoui Mohamed, Najlawi Bilel
BEHAVIOR OF A WATER DROP IMPINGING ON POROUS SUBSTRATES − EXAMINATION OF CONTACT-LINE DRAG EFFECT
Atomization and Sprays, Vol.26, 2016, issue 3
Woo Shik Kim, Sang Yong Lee
BOILING HEAT TRANSFER PREDICTION IN HELICAL COILS UNDER TERRESTRIAL GRAVITY WITH ARTIFICIAL NEURAL NETWORK
4th Thermal and Fluids Engineering Conference, Vol.11, 2019, issue
Yongqi Xie, Hongwei Wu, Rodney Day, Xing Liang
APPLICABILITY OF ARTIFICIAL NEURAL NETWORKS TO PREDICT EFFECTIVE THERMAL CONDUCTIVITY OF HIGHLY POROUS METAL FOAMS
Journal of Porous Media, Vol.16, 2013, issue 7
P. K. Sharma, Rajpal S. Bhoopal, Ramvir Singh, R. S. Beniwal