ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Porous Media
インパクトファクター: 1.49 5年インパクトファクター: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN 印刷: 1091-028X
ISSN オンライン: 1934-0508

巻:
巻 22, 2019 巻 21, 2018 巻 20, 2017 巻 19, 2016 巻 18, 2015 巻 17, 2014 巻 16, 2013 巻 15, 2012 巻 14, 2011 巻 13, 2010 巻 12, 2009 巻 11, 2008 巻 10, 2007 巻 9, 2006 巻 8, 2005 巻 7, 2004 巻 6, 2003 巻 5, 2002 巻 4, 2001 巻 3, 2000 巻 2, 1999 巻 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v17.i5.10
pages 373-390

NUMERICAL STUDY OF NON-DARCY NATURAL CONVECTION FROM TWO DISCRETE HEAT SOURCES IN A VERTICAL ANNULUS

Sankar M
East Point College of Engineering and Technology
Bongsoo Jang
Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-805, Republic of Korea
Younghae Do
Department of Mathematics, KNU - Center for Nonlinear Dynamics, Kyungpook National University, Daegu 702-701, Republic of Korea

要約

A numerical investigation of natural convection heat transfer induced by two discrete heat sources placed on the inner wall of a vertical porous annulus has been carried out in this article. The outer wall is maintained at a lower temperature, while top and bottom walls and unheated portions of inner wall are kept adiabatic. The porous medium is modeled by using the Brinkman−extended Darcy equation. An implicit and stable finite difference technique has been used to solve the nonlinear and coupled governing equations of the flow system. For a wide range of modified Rayleigh and Darcy numbers and aspect and radius ratios, the analysis is carried out to understand the effect of discrete heating on the streamlines, isotherms, and the average Nusselt number. The qualitative changes in the flow patterns and isotherms due to discrete heating caused by two heat sources are successfully captured in the present analysis. It was observed that the heat transfer can be enhanced by increasing the radius ratio, modified Rayleigh number, and Darcy number, while it decreases with an increase in aspect ratio. Among the two heat sources, the bottom heater is found to dissipate higher heat transfer compared to top heater. The maximum temperature at the heat sources is also determined. We discuss many issues of the maximum temperature for different values of the modified Rayleigh and Darcy numbers, radius, and aspect ratios.


Articles with similar content:

Non-Darcy Effects on Steady Three-Dimensional Natural Convection in a Rectangular Box Containing Heat Generating Porous Medium
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Anil Kumar Mishra, Ram Vinoy Sharma, S. Kumar
DENSITY MAXIMUM EFFECT OF DOUBLE-DIFFUSIVE MIXED CONVECTION HEAT TRANSFER IN A TWO-SIDED LID-DRIVEN POROUS CAVITY
Special Topics & Reviews in Porous Media: An International Journal, Vol.8, 2017, issue 3
N. Suresh, N. Nithyadevi, Muthu Rajarathinam
Prandtl Number Effects on Mixed Convection in a Lid-Driven Porous Cavity
Journal of Porous Media, Vol.11, 2008, issue 8
M. Muthtamilselvan, Jinho Lee, Prem Kumar Kandaswamy
Natural Convection Heat Transfer in Right Triangular Enclosures with a Cold Inclined Wall and a Hot Vertical Wall
Heat Transfer Research, Vol.42, 2011, issue 3
Mostafa Mahmoodi
NUMERICAL STUDY ON THE EFFECT OF MAGNETIC FIELD IN A POROUS ENCLOSURE USING NANOFLUID WITH MID-HORIZONTAL MOVING LID: BRINKMAN-FORCHHEIMER EXTENDED DARCY MODEL
Journal of Porous Media, Vol.21, 2018, issue 5
N. Nithyadevi, A. Shamadhani Begum