ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Porous Media
インパクトファクター: 1.49 5年インパクトファクター: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN 印刷: 1091-028X
ISSN オンライン: 1934-0508

巻:
巻 23, 2020 巻 22, 2019 巻 21, 2018 巻 20, 2017 巻 19, 2016 巻 18, 2015 巻 17, 2014 巻 16, 2013 巻 15, 2012 巻 14, 2011 巻 13, 2010 巻 12, 2009 巻 11, 2008 巻 10, 2007 巻 9, 2006 巻 8, 2005 巻 7, 2004 巻 6, 2003 巻 5, 2002 巻 4, 2001 巻 3, 2000 巻 2, 1999 巻 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v16.i4.60
pages 341-349

SERIES SOLUTION FOR CONVECTIVE-RADIATIVE POROUS FIN USING DIFFERENTIAL TRANSFORMATION METHOD

Mohsen Torabi
Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
Hessameddin Yaghoobi
Faculty of Mechanical Engineering, Semnan University, Semnan; Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran

要約

Enhancement of heat-transfer rate through porous fins is one of the common choices nowadays. As the energy equation is nonlinear, researchers did not concentrate on analyzing porous fins analytically. In this article, the convective-radiative rectangular porous fin was analyzed. The calculations are carried out using the differential transformation method (DTM), which is an analytical solution technique that can be applied to various types of differential equations. The current results are then compared with previously obtained results using the well-known fourth-order Runge-Kutta numerical solution method in order to verify the accuracy of the proposed technique. From the findings, it is revealed that the DTM can achieve accurate results in predicting the solution of such problems. After this verification, the fin efficiencies and effects of some heat transfer characteristics of the system in this problem, such as porous parameter and radiation parameter, were analyzed.