ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Porous Media
インパクトファクター: 1.49 5年インパクトファクター: 1.159 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN 印刷: 1091-028X
ISSN オンライン: 1934-0508

巻:
巻 22, 2019 巻 21, 2018 巻 20, 2017 巻 19, 2016 巻 18, 2015 巻 17, 2014 巻 16, 2013 巻 15, 2012 巻 14, 2011 巻 13, 2010 巻 12, 2009 巻 11, 2008 巻 10, 2007 巻 9, 2006 巻 8, 2005 巻 7, 2004 巻 6, 2003 巻 5, 2002 巻 4, 2001 巻 3, 2000 巻 2, 1999 巻 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v15.i6.20
pages 517-530

A POROUS MODEL FOR THE INTERPRETATION OF MERCURY POROSIMETRY TESTS

Eduardo Rojas
Faculty of Engineering, Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas, 76160, Queretaro, Qro., Mexico
Maria de la Luz Perez-Rea
Faculty of Engineering, Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas, 76160, Queretaro, Qro., Mexico
Gustavo Gallegos
Faculty of Engineering, Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas, 76160, Queretaro, Qro., Mexico
Julio Leal
Faculty of Engineering, Universidad Autonoma de Queretaro, Centro Universitario, Cerro de las Campanas, 76160, Queretaro, Qro., Mexico

要約

Recently, the pore size distribution obtained from mercury intrusion porosimetry tests has been used by different researchers to describe some properties of soils. For example, porosimetry results have been used to obtain the soil-water characteristic curve and the hydraulic conductivity for different soils. One of the main assumptions of the mercury intrusion porosimetry test is to consider that the pores of soil can be represented by a bundle of capillary tubes, each of a different diameter, which saturate or dry independently from the others. However, this assumption is unrealistic. This article presents a more realistic porous model based on three different types of pores that allow for the simulation of the hysteresis of the soil-water characteristic curve as for the collapse of pores during drying. This model is a computational type, which means that the different elements are accommodated in two- or three-dimensional regular networks and the filling or drying of pores is followed step by step. The model is used to simulate a mercury intrusion porosimetry test in a material where the pore size distribution has also been obtained from image analysis of scanning electron micrographs. This simulation shows that the current interpretation for mercury intrusion porosimetry test results in pore sizes much smaller than the real values.


Articles with similar content:

A COMPUTING METHOD TO MEASURE PORE SIZE IN POROUS MATERIALS BASED ON CAPILLARY PENETRATION OBSERVATION
International Heat Transfer Conference 16, Vol.24, 2018, issue
Xu Cheng, Baokui Yi, Wenjing Du, Gongming Xin, Yan Chen, Hongru Li
SIMULATION OF REACTIVE MELT INFILTRATION FOR THE MANUFACTURE OF CERAMIC MATRIX COMPOSITES
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
M. Valat, C. Le Bot, Eric Arquis, A. Pons, C. Descamps, Stephane Vincent
USING MULTICYCLE MERCURY INTRUSION POROSIMETRY TO INVESTIGATE HYSTERESIS PHENOMENON OF DIFFERENT POROUS MEDIA
Journal of Porous Media, Vol.21, 2018, issue 7
Zhiye Gao, Qinhong Hu, Shoichiro Hamamoto
EXPERIMENTAL INVESTIGATION OF TERTIARY OIL GRAVITY DRAINAGE IN FRACTURED POROUS MEDIA
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 2
Behzad Rostami, M. Rezaveisi, Shahab Ayatollahi, Riyaz Kharrat, C. Ghotbi
Random Packs and Their Use in Grain-Scale Modeling, with Applications to Energetic Materials
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 5
D. S. Stafford, Thomas Jackson