ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Porous Media
インパクトファクター: 1.752 5年インパクトファクター: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN 印刷: 1091-028X
ISSN オンライン: 1934-0508

巻:
巻 24, 2021 巻 23, 2020 巻 22, 2019 巻 21, 2018 巻 20, 2017 巻 19, 2016 巻 18, 2015 巻 17, 2014 巻 16, 2013 巻 15, 2012 巻 14, 2011 巻 13, 2010 巻 12, 2009 巻 11, 2008 巻 10, 2007 巻 9, 2006 巻 8, 2005 巻 7, 2004 巻 6, 2003 巻 5, 2002 巻 4, 2001 巻 3, 2000 巻 2, 1999 巻 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v15.i12.40
pages 1111-1123

EXPERIMENTAL INVESTIGATION OF WETTABILITY EFFECT AND DRAINAGE RATE ON TERTIARY OIL RECOVERY FROM FRACTURED MEDIA

P. Maroufi
EOR Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 713451719, Iran
H. Rahmanifard
EOR Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 713451719, Iran
H. K. Al-Hadrami
Department of Petroleum and Chemical Engineering, Sultan Qaboos University, Muscat Oman
M. Escrochi
EOR Research Center, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 713451719, Iran
Shahab Ayatollahi
Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
A. Jahanmiri
School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 713451719, Iran

要約

Vertical displacement of oil by gas is one of the most efficient methods for oil recovery from naturally fractured reservoirs. Unlike the homogeneous media, the ultimate oil recovery by gravity drainage in fractured media is more dependent on the production rate. Hence finding the optimum production rate for more oil recovery with respect to the properties of media seems to be essential. In this work, unconsolidated packed models of cylindrical geometry surrounded by fractures were utilized to perform a series of flow visualization experiments during which the contribution of different parameters such as the extent of matrix wettability and the withdrawal rate were studied. In addition, mutual effects of wettability and production rate on tertiary oil recovery efficiency through controlled and free fall gravity drainage processes were also investigated. Experimental results obtained from tertiary gravity drainage experiments demonstrated that just before gas breakthrough, lower withdrawal rates facilitate the tertiary oil recovery under the film flow mechanism, which leads to a higher ultimate recovery factor. However, after gas breakthrough, monitoring oil recovery by gravity drainage showed that higher production rates recovered more oil. Furthermore, under tertiary recovery processes in low-production cases, oil-wet systems achieved higher recovery factors, while at high withdrawal rates, more oil was recovered for 50% oil-wet media.


Articles with similar content:

WETTABILITY EFFECTS IN GAS GRAVITY—ASSISTED FLOW AS RELATED TO DISPLACEMENT INSTABILITY
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 1
Behzad Rostami, V. Alipour Tabrizy, Riyaz Kharrat, C. Ghotbi, M. Khosravi
EFFECTS OF FRACTURE PROPERTIES ON THE BEHAVIOR OF FREE-FALL AND CONTROLLED GRAVITY DRAINAGE PROCESSES
Journal of Porous Media, Vol.15, 2012, issue 4
Nima Rezaei, Sohrab Zendehboudi, Ioannis Chatzis
QUANTIFYING THE ROLE OF PORE GEOMETRY AND MEDIUM HETEROGENEITY ON HEAVY OIL RECOVERY DURING SOLVENT/CO-SOLVENT FLOODING INWATER-WET SYSTEMS
Journal of Porous Media, Vol.14, 2011, issue 4
S. Vossoughi, Ali Akbar Dehghan, Mohammad Hossein Ghazanfari, Riyaz Kharrat
IMPROVEMENT OF OIL RECOVERY THROUGH A NOVEL LOW-TENSION FOAM FLOODING AFTER ENHANCED OIL RECOVERY PROCESSES
Journal of Porous Media, Vol.21, 2018, issue 3
Yunlong Xie, Zhengxin Wang, Jun Lu, Shanfa Tang, Lei Tian, Xiaopei Yang, Xiaoyang Lei
EXPERIMENTAL STUDY OF MISCIBLE DISPLACEMENT WITH HYDROCARBON SOLVENT IN SHALY HEAVY OIL RESERVOIRS USING FIVE-SPOT MICROMODELS: THE ROLE OF SHALE GEOMETRICAL CHARACTERISTICS
Journal of Porous Media, Vol.15, 2012, issue 5
Mohsen Masihi, Saber Mohammadi, Mohammad Hossein Ghazanfari, Riyaz Kharrat