ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Porous Media
インパクトファクター: 1.49 5年インパクトファクター: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN 印刷: 1091-028X
ISSN オンライン: 1934-0508

巻:
巻 23, 2020 巻 22, 2019 巻 21, 2018 巻 20, 2017 巻 19, 2016 巻 18, 2015 巻 17, 2014 巻 16, 2013 巻 15, 2012 巻 14, 2011 巻 13, 2010 巻 12, 2009 巻 11, 2008 巻 10, 2007 巻 9, 2006 巻 8, 2005 巻 7, 2004 巻 6, 2003 巻 5, 2002 巻 4, 2001 巻 3, 2000 巻 2, 1999 巻 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v15.i3.20
pages 211-232

NUMERICAL SIMULATION OF FREE FALL AND CONTROLLED GRAVITY DRAINAGE PROCESSES IN POROUS MEDIA

Sohrab Zendehboudi
Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
Ali Shafiei
Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
Ioannis Chatzis
Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2l 3G1, Canada
Maurice B. Dusseault
Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

要約

Multiphase flow simulation in porous media requires understanding of the physics of transport, tools for managing complicated scale-dependent structures, and effective solution methods. Complex two-phase flow in porous media under gravity drainage is addressed in this paper; mathematical simulation of the process in homogeneous and fractured porous media was carried out using COMSOL. A new approach is proposed to simulate time-dependent drainage in vertical porous physical models to investigate aspects of gravity drainage (free fall or controlled gravity drainage) on oil saturation distribution and oil production history. The effect of permeability heterogeneity in the form of fractures on the drainage process, as well as the evolution of relative permeability of the wetting and non-wetting phases, capillary pressure, and some other significant parameters, was mathematically investigated. The results obtained are compared with experimental data from laboratory tests were reported in the literature, showing a good agreement.


Articles with similar content:

EXPERIMENTAL INVESTIGATION OF TERTIARY OIL GRAVITY DRAINAGE IN FRACTURED POROUS MEDIA
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 2
Behzad Rostami, M. Rezaveisi, Shahab Ayatollahi, Riyaz Kharrat, C. Ghotbi
NON-EQUILIBRIUM MODEL OF GRAVITY DRAINAGE IN A SINGLE BLOCK
Journal of Porous Media, Vol.16, 2013, issue 6
Mohsen Masihi, S. Jahanbakhshi, Mohammad Hossein Ghazanfari
MULTISCALE AND MULTIPHASE MODELING OF FLOW BEHAVIOR IN DISCRETE FRACTURE NETWORKS FOR TIGHT OIL RESERVOIRS
Journal of Porous Media, Vol.22, 2019, issue 7
Ning Li, Qiquan Ran, Yu-Shu Wu, Lifeng Liu
SCALING OF GAS-OIL GRAVITY DRAINAGE MECHANISM IN FRACTURED RESERVOIRS EMPLOYING THE EXTENDED MATERIAL BALANCE EQUATION
Journal of Porous Media, Vol.22, 2019, issue 11
Negin Rahmati, Mohammad-Reza Rasaei
Numerical Modeling of the Gas-Oil Gravity Drainage Process in Stratified and Fractured Porous Media
Journal of Porous Media, Vol.11, 2008, issue 5
M. M. Zerafat, Moein Nabipour, Shahab Ayatollahi