ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Porous Media
インパクトファクター: 1.49 5年インパクトファクター: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN 印刷: 1091-028X
ISSN オンライン: 1934-0508

巻:
巻 22, 2019 巻 21, 2018 巻 20, 2017 巻 19, 2016 巻 18, 2015 巻 17, 2014 巻 16, 2013 巻 15, 2012 巻 14, 2011 巻 13, 2010 巻 12, 2009 巻 11, 2008 巻 10, 2007 巻 9, 2006 巻 8, 2005 巻 7, 2004 巻 6, 2003 巻 5, 2002 巻 4, 2001 巻 3, 2000 巻 2, 1999 巻 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v15.i3.50
pages 261-281

THERMAL RADIATION EFFECTS ON MAGNETOHYDRODYNAMIC HEAT AND MASS TRANSFER FROM A HORIZONTAL CYLINDER IN A VARIABLE POROSITY REGIME

V. Ramachandra Prasad
Department of Mathematics, Madanapalle Institute of Technology and Science, Madanapalle, India
Vasu B
Motilal Nehru National Institute of Technology Allahabad
O. Anwar Bég
Fluid Mechanics, Nanosystems and Propulsion, Aeronautical and Mechanical Engineering, School of Computing, Science and Engineering, Newton Building, University of Salford, Manchester M54WT, United Kingdom
D. Rana Parshad
Division of Mathematics and Computer Science, Clarkson University, Potsdam, New York 13676, USA

要約

A mathematical model is presented for multiphysical transport of an optically dense, electrically conducting fluid along an isothermal horizontal circular cylinder embedded in a variable-porosity medium. A constant, static, magnetic field is applied transverse to the cylinder surface. The non-Darcy effects are simulated via the second-order Forchheimer drag force term in the momentum boundary layer equation. The cylinder surface is maintained at a constant temperature and concentration. The boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller-box finite-difference scheme. The increasing magnetohydrodynamic body force parameter (Μ) is found to decelerate the flow. Increasing porosity (ε) is found to elevate velocities (i.e., accelerate the flow but decrease temperatures; cool the boundary layer regime). Increasing the Forchheimer inertial drag parameter (Λ) retards the flow considerably but enhances temperatures. Increasing the Darcy number accelerates the flow due to a corresponding rise in permeability of the regime and concomitant decrease in Darcian impedance. Thermal radiation is seen to reduce both velocity and temperature in the boundary layer. The local Nusselt number is also found to be enhanced with increasing both porosity and radiation parameters.


Articles with similar content:

EFFECTS OF VARIABLE VISCOSITY AND THERMAL CONDUCTIVITY ON THE BRINKMAN MODEL FOR MIXED CONVECTION FLOW PAST A HORIZONTAL CIRCULAR CYLINDER IN A POROUS MEDIUM
Journal of Porous Media, Vol.13, 2010, issue 1
Z. Z. Rashed, I. A. Hassanien
THERMAL RADIATION EFFECTS ON NON-NEWTONIAN FLUID IN A VARIABLE POROSITY REGIME WITH PARTIAL SLIP
Journal of Porous Media, Vol.19, 2016, issue 4
K. Harshavalli, V. Ramachandra Prasad, Osman Anwar Beg, A. Subba Rao
THERMO-DIFFUSION AND DIFFUSION-THERMO EFFECTS ON FREE CONVECTION FLOW PAST A HORIZONTAL CIRCULAR CYLINDER IN A NON-DARCY POROUS MEDIUM
Journal of Porous Media, Vol.16, 2013, issue 4
V. Ramachandra Prasad, Vasu B, O. Anwar Bég
FREE CONVECTION HEAT AND MASS TRANSFER OF A NANOFLUID PAST A HORIZONTAL CYLINDER EMBEDDED IN A NON-DARCY POROUS MEDIUM
Journal of Porous Media, Vol.21, 2018, issue 3
V. Ramachandra Prasad, A. Subba Rao, M. Rashidi, O. Anwar Bég
Radiative Effects on Non-Darcy Natural Convection from a Heated Vertical Plate in Saturated Porous Media with Mass Transfer for Non-Newtonian Fluid
Journal of Porous Media, Vol.12, 2009, issue 1
M. A. EL-Hakiem