ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Porous Media
インパクトファクター: 1.752 5年インパクトファクター: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN 印刷: 1091-028X
ISSN オンライン: 1934-0508

巻:
巻 23, 2020 巻 22, 2019 巻 21, 2018 巻 20, 2017 巻 19, 2016 巻 18, 2015 巻 17, 2014 巻 16, 2013 巻 15, 2012 巻 14, 2011 巻 13, 2010 巻 12, 2009 巻 11, 2008 巻 10, 2007 巻 9, 2006 巻 8, 2005 巻 7, 2004 巻 6, 2003 巻 5, 2002 巻 4, 2001 巻 3, 2000 巻 2, 1999 巻 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v11.i2.30
pages 159-178

Finite Element Simulations of Natural Convection in a Right-Angle Triangular Enclosure Filled with a Porous Medium: Effects of Various Thermal Boundary Conditions

Tanmay Basak
Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
Satyajit Roy
IIT Madras
C. Thirumalesha
Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

要約

The phenomenon of natural convection in a right-angle triangular enclosure filled with a porous matrix has been studied numerically. A penalty finite element analysis with biquadratic trapezoidal elements is used for solving the Navier-Stokes and energy balance equations. The detailed study is carried out in two cases, depending on various thermal boundary conditions: (1) the vertical wall is uniformly or linearly heated, while the inclined wall is cold isothermal; and (2) the inclined wall is uniformly or linearly heated, while the vertical wall is cold isothermal. In all cases, the horizontal bottom wall is adiabatic, and the geometric aspect ratio is considered to be 1. It has been found that at low Darcy numbers (Da ≤ 10−5), the heat transfer is primarily due to conduction, irrespective of the Ra and Pr. As Rayleigh number increases, there is a change from a conduction-dominant region to a convection-dominant region for Da = 10−3, and the critical Rayleigh number corresponding to the onset of convection is obtained. Some interesting features of the stream function and isotherm contours are discussed, especially for low and high Prandtl number limits. Complete heat transfer analysis is performed in terms of local and average Nusselt numbers. It is observed that the average Nusselt number for the vertical wall is √2 times that of the inclined wall for all cases, verifying the thermal equilibrium of the system.


Articles with similar content:

NATURAL CONVECTION FLOW IN A SQUARE CAVITY FILLED WITH POROUS MEDIUM FOR SINUSOIDAL HEATED TOP WALL
Special Topics & Reviews in Porous Media: An International Journal, Vol.4, 2013, issue 4
M. Sathiyamoorthy
NUMERICAL SIMULATION OF DOUBLE-DIFFUSIVE MIXED CONVECTION IN A HORIZONTAL ANNULUS UNDER TANGENTIAL MAGNETIC FIELD, WITH A ROTATING OUTER CYLINDER
Heat Transfer Research, Vol.49, 2018, issue 14
Goodarz Ahmadi, Bengt Sunden, Mehdi Bidabadi, Alireza Khoeini Poorfar, Vahid Bordbar
EFFECT OF HEATING LOCATION ON STABILITY OF NATURAL CONVECTION IN A SQUARE ENCLOSURE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Djoubeir Debbah , Omar Kholai, Saadoun Boudebous
MIXED CONVECTION IN POWER-LAW FLUIDS FROM TWO CONFINED CYLINDERS IN A SQUARE DUCT: EFFECT OF CROSS BUOYANCY
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Rajenda P. Chhabra, L. Mishra
FLOW SIMULATION AND MIXED CONVECTION IN A LID-DRIVEN SQUARE CAVITY WITH SATURATED POROUS MEDIA
Journal of Porous Media, Vol.17, 2014, issue 6
P. A. Lakshmi Narayana, P. K. Jena, A. K. Nayak