ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Porous Media
インパクトファクター: 1.49 5年インパクトファクター: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN 印刷: 1091-028X
ISSN オンライン: 1934-0508

巻:
巻 22, 2019 巻 21, 2018 巻 20, 2017 巻 19, 2016 巻 18, 2015 巻 17, 2014 巻 16, 2013 巻 15, 2012 巻 14, 2011 巻 13, 2010 巻 12, 2009 巻 11, 2008 巻 10, 2007 巻 9, 2006 巻 8, 2005 巻 7, 2004 巻 6, 2003 巻 5, 2002 巻 4, 2001 巻 3, 2000 巻 2, 1999 巻 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v13.i1.10
pages 1-11

ANISOTROPIC DIFFUSION IN FIBROUS POROUS MEDIA

Yoshito Nakashima
National Institute of Advanced Industrial Science and Technology (AIST), Central 7, Higashi 1-1-1, Tsukuba, Ibaraki 305-8567, Japan
Susumu Kamiya
National Institute of Advanced Industrial Science and Technology (AIST), Central 7, Higashi 1-1-1, Tsukuba, Ibaraki 305-8567, Japan

要約

Some porous media possess fibrous structures. Examples include the geologically deformed porous rocks, white matter in human brain tissue, and fiber-reinforced composite materials. These anisotropic porous media show strong diffusive anisotropy. This study focused on a system consisting of randomly placed parallel rods as a model of fibrous porous media, and describes the analysis of three-dimensional diffusive anisotropy through the lattice random walk computer simulations. The rods were completely impermeable, and nonsorbing random walkers migrate in the percolated pore space between the parallel rods. Direction-dependent self-diffusivity was calculated by taking the time derivative of the mean square displacement of the walkers, and its three-dimensional shape was expressed graphically as a shell-like object by polar representation. Systematic simulations for varied rod packing densities revealed that the shell-like object was no longer convex ellipsoidal, but was constricted in the direction normal to the rod axis when the maximum-to-minimum diffusivity ratio of the diffusion ellipsoids exceeded 1.5 (i.e., when the rod volume fraction exceeded 34 vol %). An analytical solution of the direction-dependent self-diffusivity with constriction is presented for the lattice walk along a straight pore. The solution suggests that the ellipsoid constriction observed for the randomly placed parallel rods is a remnant of the anisotropic pore structure of the hexagonal closest packing, which is the end member of the rod packing. The onset condition of the constriction of the shape of the direction-dependent self-diffusivity is investigated analytically using a diffusion tensor expression. The analysis reveals that the constriction occurs when the maximum-to-minimum diffusivity ratio exceeds exactly 1.5, which agrees well with the simulation results. The critical value of 1.5 can also be applicable to the geologically deformed natural porous rocks having more complex pore structure compared with the simple rod packing system.


Articles with similar content:

Molecular Transport through Arterial Wall Composed of Smooth Muscle Cells and a Homogeneous Fiber Matrix
Journal of Porous Media, Vol.12, 2009, issue 3
Pertti Sarkomaa, Mahsa Dabagh, Payman Jalali, Yrjo T. Konttinen
NUMERICAL BENCHMARK TEST NO. 3.1: IDEALIZED TEE-JUNCTION
Multiphase Science and Technology, Vol.3, 1987, issue 1-4
Dudley Brian Spalding
Phase matrix for horizontally oriented ice crystals of cirrus clouds
ICHMT DIGITAL LIBRARY ONLINE, Vol.14, 2007, issue
Anatoli Borovoi, Ariel Cohen, Aleksey Burnashov
NUMERICAL PREDICTIONS OF THE EFFECTIVE THERMAL CONDUCTIVITY FOR MULTIPHASE POROUS BUILDING MATERIALS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
Mazhar Hussain, Ya-Ling He, Wen-Quan Tao
Comparative Characteristics of the Indices of Invertebrates Macrofauna Diversity in the Ukrainian and Romanian Sections of the Danube River Delta
Hydrobiological Journal, Vol.45, 2009, issue 6
Ye. Ye. Zorina-Sakharova