ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Porous Media
インパクトファクター: 1.752 5年インパクトファクター: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN 印刷: 1091-028X
ISSN オンライン: 1934-0508

巻:
巻 23, 2020 巻 22, 2019 巻 21, 2018 巻 20, 2017 巻 19, 2016 巻 18, 2015 巻 17, 2014 巻 16, 2013 巻 15, 2012 巻 14, 2011 巻 13, 2010 巻 12, 2009 巻 11, 2008 巻 10, 2007 巻 9, 2006 巻 8, 2005 巻 7, 2004 巻 6, 2003 巻 5, 2002 巻 4, 2001 巻 3, 2000 巻 2, 1999 巻 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v20.i12.60
pages 1137-1154

HEAT AND MASS TRANSFER ANALYSIS OF UNSTEADY NON-NEWTONIAN FLUID FLOW BETWEEN POROUS SURFACES IN THE PRESENCE OF MAGNETIC NANOPARTICLES

M. Zubair Akbar Qureshi
Centre for Advanced Studies in Pure and Applied Mathematics, (CASPAM), Bahauddin Zakariya University, (BZU), Multan, 608000 Pakistan; Department of Computer Science, Air University (Islamabad), Multan–Campus, Pakistan
Kashif Ali
Department of Basic Sciences and Humanities, Muhammad Nawaz Sharif University of Engineering and Technology, Multan, Pakistan
Muhammad Farooq Iqbal
Centre for Advanced Studies in Pure and Applied Mathematics, (CASPAM), Bahauddin Zakariya University, (BZU), Multan, 608000 Pakistan
M. Ashraf
Centre for Advanced Studies in Pure and Applied Mathematics, (CASPAM), Bahauddin Zakariya University, (BZU), Multan, 608000 Pakistan

要約

Nanofluids with magnetic nanoparticles have distinguished useful applications in nanotechnology and biotechnology. This study presents an analysis of flow and heat transfer effects for the Casson nanofluid through orthogonally moving porous disks in the presence of an external magnetic field. Buongiorno's two-phase model has been employed for the mathematical modeling of the problem, in which the slip mechanism of the nanoparticles affects the concentration and thermal profiles. Governing partial differential equations are converted into nonlinear ordinary ones which are solved numerically by using the shooting technique. Influence of the relevant parameters on the physical quantities (like the skin friction coefficient, the Nusselt number, and the Sherwood number), and the velocity, temperature, as well as the nanoparticles concentration profiles, have been studied through tables and graphs.


Articles with similar content:

NUMERICAL MODELING OF NON-NEWTONIAN FLUID FLOW BETWEEN POROUS DISKS IN THE PRESENCE OF NANOPARTICLES
Nanoscience and Technology: An International Journal, Vol.8, 2017, issue 1
Muhammad Farooq Iqbal, Kashif Ali, M. Zubair Akbar Qureshi, Muhammad Ashraf
Effects of Thermal Radiation and Chemical Reaction on Steady MHD Mixed Convective Flow over a Vertical Porous Plate with Induced Magnetic Field
International Journal of Fluid Mechanics Research, Vol.42, 2015, issue 4
Kamalesh K. Pandit, Dipak Sarma
EFFECTS OF VISCOUS DISSIPATION AND HEAT GENERATION/ABSORPTION ON NANOFLUID FLOW OVER AN UNSTEADY STRETCHING SURFACE WITH THERMAL RADIATION AND THERMOPHORESIS
Nanoscience and Technology: An International Journal, Vol.9, 2018, issue 4
Manoj Kumar, Alok Kumar Pandey
HEAT AND MASS TRANSFER OF A NON-NEWTONIAN JEFFREY NANOFLUID OVER AN EXTRUSION STRETCHING SHEET WITH THERMAL RADIATION AND NONUNIFORM HEAT SOURCE/SINK
Computational Thermal Sciences: An International Journal, Vol.12, 2020, issue 2
Gopinath Mandal, Dulal Pal
ANALYTICAL APPROACH TO STAGNATION-POINT FLOW AND HEAT TRANSFER OF A MICROPOLAR FLUID VIA A PERMEABLE SHRINKING SHEET WITH SLIP AND CONVECTIVE BOUNDARY CONDITIONS
Heat Transfer Research, Vol.50, 2019, issue 8
Khilap Singh, Manoj Kumar, Alok Kumar Pandey