ライブラリ登録: Guest

A METHODOLOGY TO CHARACTERIZE FIBER PREFORM PERMEABILITY BY USING KARDAR–PARISI–ZHANG EQUATION

巻 22, 発行 7, 2019, pp. 799-811
DOI: 10.1615/JPorMedia.2019021772
Get accessGet access

要約

Permeability tensor describes the resistance to fluid flow through the fibrous porous media, which may not be spatially uniform. This nonuniformity in fiber architecture causes variation in the permeability value of the fibrous domain. The time evolution and geometry of the rough interfaces of the fluid flow in fibrous porous medium are analyzed using the concepts of dynamic scaling and self-affine fractal geometry, and they are shown to belong to the Kardar–Parisi–Zhang (KPZ) universality class. The resulting growth exponent, β is found to match the 1 + 1 KPZ values, and the roughness exponent, α, describes the standard deviation of the variation in fiber preform permeability. Additionally, this characterization is used to develop a tool to quantify the percentage and strength of defects within the fibrous porous media from flow front profile analysis.

参考
  1. Advani, S.G. and Simacek, P., LIMS (Liquid Injection Molding Simulation), Computer Software, University of Delaware, Newark, DE, 1996.

  2. Advani, S.G. and Sozer, M., Process Modeling in Composites Manufacturing, New York: Marcel Dekker, 2003.

  3. Alava, M., Dube, M., and Rost, M., Imbibition in Disordered Media, Adv. Phys, vol. 53, pp. 83-175, 2004.

  4. Arbter, R., Beraud, J.M., Binetruy, C., Bizet, L., Breard, J., Comas-Cardona, S., Demaria, C., Endruweit, A., Ermanni, P., Gommer, F., Hasanovic, S., Henrat, P., Klunker, F., Laine, B., Lavanchy, S., Lomov, S.V., Long, A., Michaud, V., Morren, G., Ruiz, E., Sol, H., Trochu, F., Verleye, B., Wietgrefe, M., Wu, W., and Ziegmann, G., Experimental Determination of the Permeability of Textiles: A Benchmark Exercise, Compos. Part AAppl. Sci. Manuf., vol. 42, pp. 1157-1168, 2011.

  5. Barabasi, A.L. and Stanley, H.E., Fractal Concepts in Surface Growth, Cambridge, UK: Cambridge University Press, 1995.

  6. de Parseval, Y., Roy, V., and Advani, S.G., Effect of Local Variations of Perform Permeability on the Average Permeability during Resin Transfer Molding of Composites, ANTEC 95, Proc. 53rd Ann. Tech. Conf. Soc. Plastics Eng., Boston, MA, pp. 3040-3044,1995.

  7. Desplentere, F., Lomov, S., and Verpoest, I., Influence of the Scatter of Preform Permeability on the Mould Filling: Numerical Simulations, TexComp 7, Proc. 11th US-Japan Conf. Compos. Mater, Textile-9, 2004.

  8. Endruweit, A. and Ermanni, P., The In-Plane Permeability of Sheared Textiles. Experimental Observations and a Predictive Conversion Model, Compos. Part A Appl. Sci. Manuf., vol. 35, pp. 439-451, 2004.

  9. Family, F. and Vicsek, T., Scaling of the Active Zone in the Eden Process on Percolation Networks and the Ballistic Deposition Model, J. Phys. A. Math. Gen., vol. 18, pp. L75-L81,1999.

  10. Hoes, K., Dinescu, D., Vanheule, M., Sol, H., Parnas, R.S., Belov, E., and Lomov, S., Statistical Distribution of Permeability Values of Different Porous Materials, ECCM-10, Proc. 10th Euro. Conf. Compos. Mater, Bruges, Belgium, 2002.

  11. Liu, B., Bickerton, S., and Advani, S.G., Modelling and Simulation of Resin Transfer Moulding (RTM)-Gate Control, Venting and Dry Spot Prediction, Compos. Part A Appl. Sci. Manuf, vol. 27, pp. 135-141, 1996.

  12. Lundstrom, T.S., Frishfelds, V., and Jakovics, A., A Statistical Approach to Permeability of Clustered Fibre Reinforcements, J. Compos. Mater-., vol. 38, pp. 1137-1149, 2004.

  13. Myllys, M., Maunuksela, J., Alava, M., Ala-Nissila, T., Merikoski, J., and Timonen, J., Kinetic Roughening in Slow Combustion of Paper, Phys. Rev. E, vol. 64, p. 36101, 2001.

  14. Okonkwo, K., Simacek, P., Advani, S.G., and Parnas, R.S., Characterization of 3D Fiber Preform Permeability Tensor in Radial Flow Using an Inverse Algorithm based on Sensors and Simulation, Compos. Part A Appl. Sci. Manuf, vol. 42, pp. 1283-1292, 2011.

  15. Padmanabhan, S.K. and Pitchumani, R., Stochastic Modeling of Nonisothermal Flow during Resin Transfer Molding, Int. J. Heat Mass Transf., vol. 42, pp. 3057-3070, 1999.

  16. Pan, R., Liang, Z., Zhang, C., and Wang, B., Statistical Characterization of Fiber Permeability for Composite Manufacturing, Polym. Compos, vol. 21, pp. 996-1006,2000.

  17. Pillai, K.M., Modeling the Unsaturated Flow in Liquid Composite Molding Processes: A Review and Some Thoughts, J. Compos. Mater., vol. 38, pp. 2097-2118, 2004.

  18. Rubio, M.A., Edwards, C.A., Dougherty, A., and Gollub, J.P., Self-Affine Fractal Interfaces from Immiscible Displacement in Porous Media, Phys. Rev. Lett., vol. 63, pp. 1955-1958,1990.

  19. Smith, L. and Freeze, R.A., Stochastic Analysis of Three-Dimensional Flow in a Bounded Domain: 1. One-Dimensional Simulations, Water Resour. Res., vol. 22, p. 695, 1986.

  20. Sozer, E.M., Effect of Preform Non-Uniformity on Mold Filling in RTM Process, 33 ISTC, International SAMPE Technical Conference Series, Seattle, WA, vol. 33, pp. 176-189, 2001.

  21. Takeuchi, K.A. and Sano, M., Evidence for Geometry-Dependent Universal Fluctuations of the Kardar-Parisi-Zhang Interfaces in Liquid-Crystal Turbulence, J. Stat. Phys, vol. 147, no. 5, pp. 853-890, 2012.

  22. Vernet,N., Ruiz, E., Advani, S., Alms, J.B., Aubert, M., Barburski, M., Barari,B., Beraud, J.M., Berg, D.C., Correia,N.,Danzi, M., Delaviere, T., Dickert, M., Di Fratta, C., Endruweit, A., Ermanni, P., Francucci, G., Garcia, J.A., George, A., Hahn, C., Klunker, F., Lomov, S.V., Long, A., Louis, B., Maldonado, J., Meier, R., Michaud, V., Perrin, H., Pillai, K., Rodriguez, E., Trochu, F., Verheyden, S., Weitgrefe, M., Xiong, W., Zaremba, S., and Ziegmann, G., Experimental Determination of the Permeability of Engineering Textiles: Benchmark II, Compos. Part A Appl. Sci. Manuf, vol. 61, pp. 172-184, 2014.

によって引用された
  1. Chen Shijun, Wu Qiaoguo, Zu Lei, Zhang Qian, Zhang Guiming, Wang Huabi, Li Debao, Cao Xuewen, Ni Wei, Deng Shaojie, Influence of process parameters on resin content of filament-wound composite based on simulation of dual-phase resin flow, Composite Structures, 276, 2021. Crossref

  2. Sukur Emine Feyza, Elmas Sinem, Seyyednourani Mahsa, Eskizeybek Volkan, Yildiz Mehmet, Sas Hatice S., Effects of meso‐ and micro‐scale defects on hygrothermal aging behavior of glass fiber reinforced composites , Polymer Composites, 2022. Crossref

近刊の記事

Study on Adsorption-desorption Characteristics and Mechanism of Gaseous Water in Shale Na Zhang, Shuaidong Wang, Xinyue Wang, Hao Wang, Can Huang, Zheng Li Heat And Mass Transfer of Oldroyd-B And Jeffery-Williamson Ternary-Hybrid Nanofluids Over A Stretching Sheet In A Porous Medium Ahmed M. Rashad, Hossam Nabwey, Waqar A. Khan, Zeinab Abdelrahman, shereen abdelnaiem, Miad Abu Hawsah Steady Newtonian fluid flow in nephritis with linear dripping at the walls Nosheen Zareen Khan, A. M Siddiqui, Mostafa Zahri Effects of Momentum Slip and Convective Boundary Condition on a Forced Convection in a Channel Filled with Bidisperse Porous Medium (BDPM) Vanengmawia PC, Surender Ontela ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM Pushap Sharma, Deepak Bains, G. C. Rana Effect of Microstructures on Mass Transfer inside a Hierarchically-structured Porous Catalyst Masood Moghaddam, Abbas Abbassi, Jafar Ghazanfarian Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk Priya Bartwal, Himanshu Upreti, Alok Kumar Pandey Numerical Simulation of 3D Darcy-Forchheimer Hybrid Nanofluid Flow with Heat Source/Sink and Partial Slip Effect across a Spinning Disc Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui Application of Artificial Neural Network for Modeling of Motile Microorganism-Enhanced MHD Tangent Hyperbolic Nanofluid across a vertical Slender Stretching Surface Bilal Ali, Shengjun Liu, Hongjuan Liu ELASTIC INTERACTIONS BETWEEN EQUILIBRIUM PORES/HOLES IN POROUS MEDIA UNDER REMOTE STRESS Kostas Davanas Pore structure and permeability behavior of porous media under in-situ stress and pore pressure: Discrete element method simulation on digital core Jun Yao, Chunqi Wang, Xiaoyu Wang, Zhaoqin Huang, Fugui Liu, Quan Xu, Yongfei Yang Influence of Lorentz forces on forced convection of Nanofluid in a porous lid driven enclosure Yi Man, Mostafa Barzegar Gerdroodbary SUTTERBY NANOFLUID FLOW WITH MICROORGANISMS AROUND A CURVED EXPANDING SURFACE THROUGH A POROUS MEDIUM: THERMAL DIFFUSION AND DIFFUSION THERMO IMPACTS galal Moatimid, Mona Mohamed, Khaled Elagamy CHARACTERISTICS OF FLOW REGIMES IN SPIRAL PACKED BEDS WITH SPHERES Mustafa Yasin Gökaslan, Mustafa Özdemir, Lütfullah Kuddusi Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari A nanofluid couple stress flow due to porous stretching and shrinking sheet with heat transfer A. B. Vishalakshi, U.S. Mahabaleshwar, V. Anitha, Dia Zeidan ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly Porosity Impacts on MHD Casson Fluid past a Shrinking Cylinder with Suction Annuri Shobha, Murugan Mageswari, Aisha M. Alqahtani, Asokan Arulmozhi, Manyala Gangadhar Rao, Sudar Mozhi K, Ilyas Khan CREEPING FLOW OF COUPLE STRESS FLUID OVER A SPHERICAL FIELD ON A SATURATED BIPOROUS MEDIUM Shyamala Sakthivel , Pankaj Shukla, Selvi Ramasamy
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain