ライブラリ登録: Guest
Critical Reviews™ in Biomedical Engineering

年間 6 号発行

ISSN 印刷: 0278-940X

ISSN オンライン: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Bioelectric Effects of Intense Ultrashort Pulses

巻 38, 発行 3, 2010, pp. 255-304
DOI: 10.1615/CritRevBiomedEng.v38.i3.20
Get accessGet access

要約

Models for electric field interactions with biological cells predict that pulses with durations shorter than the charging time of the outer membrane can affect intracellular structures. Experimental studies in which human cells were exposed to pulsed electric fields of up to 300 kV/cm amplitude, with durations as short as 10 ns, have confirmed this hypothesis. The observed effects include the breaching of intracellular granule membranes without permanent damage to the cell membrane, abrupt rises in intracellular free calcium levels, enhanced expression of genes, cytochrome c release, and electroporation for gene transfer and drug delivery. At increased electric fields, the application of nanosecond pulses induces apoptosis (programmed cell death) in biological cells, an effect that has been shown to reduce the growth of tumors. Possible applications of the intracellular electroeffects are enhancing gene delivery to the nucleus, controlling cell functions that depend on calcium release (causing cell immobilization), and treating tumors. Such nanosecond electrical pulses have been shown to successfully treat melanoma tumors by using needle arrays as pulse delivery systems. Reducing the pulse duration of intense electric field pulses even further into the subnanosecond range will allow for the use of wideband antennas to deliver the electromagnetic fields into tissue with a spatial resolution in the centimeter range. This review carefully examines the above concepts, provides a theoretical basis, and modeling results based on both continuum approaches and atomistic molecular dynamics methods. Relevant experimental data are also presented, and some of the many potential bioengineering applications discussed.

によって引用された
  1. Korohoda Włodzimierz, Grys Maciej, Madeja Zbigniew, Reversible and irreversible electroporation of cell suspensions flowing through a localized DC electric field, Cellular and Molecular Biology Letters, 18, 1, 2013. Crossref

  2. Linghu Lingjuan, Tan Yafang, Lou Yi, Hu Lina, Yang Hongchun, Yu Tinghe, Nanosecond electric pulses induce DNA breaks in cisplatin-sensitive and -resistant human ovarian cancer cells, Biochemical and Biophysical Research Communications, 430, 2, 2013. Crossref

  3. Joshi R. P., Hu Q., Role of electropores on membrane blebbing—A model energy-based analysis, Journal of Applied Physics, 112, 6, 2012. Crossref

  4. Denzi Agnese, Merla Caterina, Camilleri Paola, Paffi Alessandra, d’Inzeo Guglielmo, Apollonio Francesca, Liberti Micaela, Microdosimetric Study for Nanosecond Pulsed Electric Fields on a Cell Circuit Model with Nucleus, The Journal of Membrane Biology, 246, 10, 2013. Crossref

  5. News from Clinical Research Office of the Endourological Society (CROES), Journal of Endourology, 27, 3, 2013. Crossref

  6. Chopinet Louise, Batista-Napotnik Tina, Montigny Audrey, Rebersek Matej, Teissié Justin, Rols Marie-Pierre, Miklavčič Damijan, Nanosecond Electric Pulse Effects on Gene Expression, The Journal of Membrane Biology, 246, 11, 2013. Crossref

  7. Hu Q., Zhang Z., Qiu H., Kong M. G., Joshi R. P., Physics of nanoporation and water entry driven by a high-intensity, ultrashort electrical pulse in the presence of membrane hydrophobic interactions, Physical Review E, 87, 3, 2013. Crossref

  8. Di Gregorio Enza, Ferrauto Giuseppe, Gianolio Eliana, Aime Silvio, Gd loading by hypotonic swelling: an efficient and safe route for cellular labeling, Contrast Media & Molecular Imaging, 8, 6, 2013. Crossref

  9. Smith Kyle C., Son Reuben S., Gowrishankar T.R., Weaver James C., Emergence of a large pore subpopulation during electroporating pulses, Bioelectrochemistry, 100, 2014. Crossref

  10. Rems Lea, Ušaj Marko, Kandušer Maša, Reberšek Matej, Miklavčič Damijan, Pucihar Gorazd, Cell electrofusion using nanosecond electric pulses, Scientific Reports, 3, 1, 2013. Crossref

  11. Huang Feiran, Fang Zhihui, Mast Jason, Chen Wei, Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations, Bioelectromagnetics, 34, 4, 2013. Crossref

  12. Sridhara Viswanadham, Joshi Ravindra P., Numerical study of lipid translocation driven by nanoporation due to multiple high-intensity, ultrashort electrical pulses, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1838, 3, 2014. Crossref

  13. Guo Fei, Yao Chenguo, Bajracharya Chandra, Polisetty Swetha, Schoenbach Karl H., Xiao Shu, Simulation study of delivery of subnanosecond pulses to biological tissues with an impulse radiating antenna, Bioelectromagnetics, 35, 2, 2014. Crossref

  14. Tolstykh Gleb P., Beier Hope T., Roth Caleb C., Thompson Gary L., Ibey Bennett L., 600ns pulse electric field-induced phosphatidylinositol4,5-bisphosphate depletion, Bioelectrochemistry, 100, 2014. Crossref

  15. Qiu Hao, Joshi Ravindra P., Pradhan Aswini, Simulation of nanoparticle based enhancement of cellular electroporation for biomedical applications, Journal of Applied Physics, 116, 18, 2014. Crossref

  16. Haltiwanger Steve, Why electroporation is a useful technique for cancer treatments, in Electroporation-Based Therapies for Cancer, 2014. Crossref

  17. Wasungu Luc, Pillet Flavien, Bellard Elizabeth, Rols Marie-Pierre, Teissié Justin, Shock waves associated with electric pulses affect cell electro-permeabilization, Bioelectrochemistry, 100, 2014. Crossref

  18. Yin Shengyong, Chen Xinhua, Hu Chen, Zhang Xueming, Hu Zhenhua, Yu Jun, Feng Xiaowen, Jiang Kai, Ye Shuming, Shen Kezhen, Xie Haiyang, Zhou Lin, James Swanson Robert, Zheng Shusen, Nanosecond pulsed electric field (nsPEF) treatment for hepatocellular carcinoma: A novel locoregional ablation decreasing lung metastasis, Cancer Letters, 346, 2, 2014. Crossref

  19. Oszkár Bíró, Prof. David A. Lowther Prof., A. Ramirez Jaime, P.D. Figueiredo William, Francisco C. Vale Joao, D. Metzker Isabela, G. Santos Rafael, S. Mattos Matheus, R.S. Camargos Elizabeth, A. Lowther David, Investigation of the electroporation effect in a single cell, COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 32, 5, 2013. Crossref

  20. Yu Tinghe, Fu Xiao, Nanosecond electric pulses deprive zinc ions of carboxypeptidase G2, Bioelectrochemistry, 101, 2015. Crossref

  21. Guionet Alexis, David Fabienne, Zaepffel Clément, Coustets Mathilde, Helmi Karim, Cheype Cyril, Packan Denis, Garnier Jean-Pierre, Blanckaert Vincent, Teissié Justin, E. coli electroeradication on a closed loop circuit by using milli-, micro- and nanosecond pulsed electric fields: Comparison between energy costs, Bioelectrochemistry, 103, 2015. Crossref

  22. Chiang Nai-Jung, Wu Sheng-Nan, Kao Ching-An, Huang Yan-Ming, Chen Li-Tzong, Stimulation of electroporation-induced inward currents in glioblastoma cell lines by the heat shock protein inhibitor AUY922, Clinical and Experimental Pharmacology and Physiology, 41, 10, 2014. Crossref

  23. Romeo Stefania, D'Avino Claudio, Zeni Olga, Zeni Luigi, A Blumlein-type, nanosecond pulse generator with interchangeable transmission lines for bioelectrical applications, IEEE Transactions on Dielectrics and Electrical Insulation, 20, 4, 2013. Crossref

  24. Lamberti Patrizia, Romeo Stefania, Sannino Anna, Scarfi Maria Rosaria, Tucci Vincenzo, Zeni Olga, Pore dynamics induced by nsPEFs: A comparison between experimental and theoretical results, 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC), 2012. Crossref

  25. Bhonsle Suyashree P, Arena Christopher B, Sweeney Daniel C, Davalos Rafael V, Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses, BioMedical Engineering OnLine, 14, Suppl 3, 2015. Crossref

  26. Gowrishankar Thiruvallur R., Smith Kyle C., Weaver James C., Transport-Based Biophysical System Models of Cells for Quantitatively Describing Responses to Electric Fields, Proceedings of the IEEE, 101, 2, 2013. Crossref

  27. Merla C., Denzi A., Paffi A., Casciola M., d'Inzeo G., Apollonio F., Liberti M., Novel Passive Element Circuits for Microdosimetry of Nanosecond Pulsed Electric Fields, IEEE Transactions on Biomedical Engineering, 59, 8, 2012. Crossref

  28. Merla Caterina, Paffi Alessandra, Apollonio Francesca, Leveque Philippe, Liberti Micaela, Microdosimetry applied to nanosecond pulsed electric fields: A comparison on a single cell between real and ideal waveforms, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011. Crossref

  29. Denzi A., Merla C., Palego C., Apollonio F., Hwang J. C. M., Liberti M., Single Cell Microdosimetric Studies Comparing Ideal and Measured Nanosecond Pulsed Electric Fields, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 2013. Crossref

  30. Lamberti Patrizia, Tucci Vincenzo, Romeo Stefania, Sannino Anna, Scarfì Maria Rosaria, Zeni Olga, nsPEF-induced effects on cell membranes: use of electrophysical model to optimize experimental design, IEEE Transactions on Dielectrics and Electrical Insulation, 20, 4, 2013. Crossref

  31. Smith K. C., Weaver J. C., Electrodiffusion of Molecules in Aqueous Media: A Robust, Discretized Description for Electroporation and Other Transport Phenomena, IEEE Transactions on Biomedical Engineering, 59, 6, 2012. Crossref

  32. Smith Kyle C., Weaver James C., Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses, Biochemical and Biophysical Research Communications, 412, 1, 2011. Crossref

  33. Merla Caterina, Paffi Alessandra, Apollonio Francesca, Liberti Micaela, Microdosimetry for ultrashort electric pulses: A literature review, 2012 6th European Conference on Antennas and Propagation (EUCAP), 2012. Crossref

  34. Lamberti Patrizia, Romeo Stefania, Sannino Anna, Zeni Luigi, Zeni Olga, The Role of Pulse Repetition Rate in nsPEF-Induced Electroporation: A Biological and Numerical Investigation, IEEE Transactions on Biomedical Engineering, 62, 9, 2015. Crossref

  35. Qiu Hao, Xiao Shu, Joshi Ravi P., Simulations of Voltage Transients Across Intracellular Mitochondrial Membranes Due to Nanosecond Electrical Pulses, IEEE Transactions on Plasma Science, 42, 10, 2014. Crossref

  36. Shigimaga V. A., Pulsed Conductometry in a Variable Electric Field: Outlook for the Development of Measurements, Measurement Techniques, 57, 10, 2015. Crossref

  37. Joshi R. P., Qiu H., Asymmetric conduction in biological nanopores created by high-intensity, nanosecond pulsing: Inference on internal charge lining the membrane based on a model study, Journal of Applied Physics, 118, 9, 2015. Crossref

  38. Song J., Joshi R. P., Schoenbach K. H., Synergistic effects of local temperature enhancements on cellular responses in the context of high-intensity, ultrashort electric pulses, Medical & Biological Engineering & Computing, 49, 6, 2011. Crossref

  39. Marracino P., Migliorati M., Paffi A., Liberti M., Denzi A., d'Inzeo G., Apollonio F., Signal transduction on enzymes: the Effect of electromagnetic field stimuli on superoxide dismutase (SOD), 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2012. Crossref

  40. Loughran Sarah, Al Hossain Md, Bentvelzen Alan, Elwood Mark, Finnie John, Horvat Joseph, Iskra Steve, Ivanova Elena, Manavis Jim, Mudiyanselage Chathuranga, Lajevardipour Alireza, Martinac Boris, McIntosh Robert, McKenzie Raymond, Mustapic Mislav, Nakayama Yoshitaka, Pirogova Elena, Rashid M., Taylor Nigel, Todorova Nevena, Wiedemann Peter, Vink Robert, Wood Andrew, Yarovsky Irene, Croft Rodney, Bioelectromagnetics Research within an Australian Context: The Australian Centre for Electromagnetic Bioeffects Research (ACEBR), International Journal of Environmental Research and Public Health, 13, 10, 2016. Crossref

  41. Pasquet L., Bellard E., Rols M.P., Golzio M., Teissie J., Post-pulse addition of trans-cyclohexane-1,2-diol improves electrotransfer mediated gene expression in mammalian cells, Biochemistry and Biophysics Reports, 7, 2016. Crossref

  42. Norberg Seth A, Johnsen Eric, Kushner Mark J, Helium atmospheric pressure plasma jets interacting with wet cells: delivery of electric fields, Journal of Physics D: Applied Physics, 49, 18, 2016. Crossref

  43. Son Reuben S., Gowrishankar Thiruvallur R., Smith Kyle C., Weaver James C., Modeling a Conventional Electroporation Pulse Train: Decreased Pore Number, Cumulative Calcium Transport and an Example of Electrosensitization, IEEE Transactions on Biomedical Engineering, 63, 3, 2016. Crossref

  44. Frelinger Andrew L., Gerrits Anja J., Garner Allen L., Torres Andrew S., Caiafa Antonio, Morton Christine A., Berny-Lang Michelle A., Carmichael Sabrina L., Neculaes V. Bogdan, Michelson Alan D., Lam Wilbur, Modification of Pulsed Electric Field Conditions Results in Distinct Activation Profiles of Platelet-Rich Plasma, PLOS ONE, 11, 8, 2016. Crossref

  45. Rems L., Miklavčič D., Tutorial: Electroporation of cells in complex materials and tissue, Journal of Applied Physics, 119, 20, 2016. Crossref

  46. Merla C., Apollonio F., Paffi A., Marino C., Vernier P. T., Liberti M., Monopole patch antenna for in vivo exposure to nanosecond pulsed electric fields, Medical & Biological Engineering & Computing, 55, 7, 2017. Crossref

  47. Denzi Agnese, della Valle Elena, Apollonio Francesca, Breton Marie, Mir Lluis M., Liberti Micaela, Exploring the Applicability of Nano-Poration for Remote Control in Smart Drug Delivery Systems, The Journal of Membrane Biology, 250, 1, 2017. Crossref

  48. Hu Q., Joshi R. P., Comparative evaluation of transmembrane ion transport due to monopolar and bipolar nanosecond, high-intensity electroporation pulses based on full three-dimensional analyses, Journal of Applied Physics, 122, 3, 2017. Crossref

  49. Denzi Agnese, della Valle Elena, Esposito Gianluca, Mir Lluis M., Apollonio Francesca, Liberti Micaela, Technological and Theoretical Aspects for Testing Electroporation on Liposomes, BioMed Research International, 2017, 2017. Crossref

  50. Romeo Stefania, Lamberti Patrizia, Circuital modelling for electroporation, 2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), 2017. Crossref

  51. Lei Tao, Li Feijiang, Liang Zhuowen, Tang Chi, Xie Kangning, Wang Pan, Dong Xu, Shan Shuai, Liu Juan, Xu Qiaoling, Luo Erping, Shen Guanghao, Effects of four kinds of electromagnetic fields (EMF) with different frequency spectrum bands on ovariectomized osteoporosis in mice, Scientific Reports, 7, 1, 2017. Crossref

  52. Song J., Garner A. L., Joshi R. P., Effect of Thermal Gradients Created by Electromagnetic Fields on Cell-Membrane Electroporation Probed by Molecular-Dynamics Simulations, Physical Review Applied, 7, 2, 2017. Crossref

  53. Matveyenko Olga A., Komnatnov Maxim E., Busygina Anna V., Zharkova Lubov P., Study of impact of picosecond pulses on functional status of mitochondria of mice liver in TEM-cell, 2016 17th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), 2016. Crossref

  54. Xie Fei, Varghese Frency, Pakhomov Andrei G., Semenov Iurii, Xiao Shu, Philpott Jonathan, Zemlin Christian, Fraidenraich Diego, Ablation of Myocardial Tissue With Nanosecond Pulsed Electric Fields, PLOS ONE, 10, 12, 2015. Crossref

  55. Zharkova L. P., Romanchenko I. V., Bol’shakov M. A., Rostov V. V., Effect of Nanosecond RF Pulses on Mitochondrial Membranes, Russian Physics Journal, 60, 8, 2017. Crossref

  56. Yao Chenguo, Zhao Yajun, Mi Yan, Dong Shoulong, Lv Yanpeng, Liu Hongmei, Wang Xiaoyu, Tang Liling, Comparative Study of the Biological Responses to Conventional Pulse and High-Frequency Monopolar Pulse Bursts, IEEE Transactions on Plasma Science, 45, 10, 2017. Crossref

  57. HUA YUAN-YUAN, WANG XIAO-SHU, ZHANG YU, YAO CHEN-GUO, ZHANG XI-MING, XIONG ZHENG-AI, Intense picosecond pulsed electric fields induce apoptosis through a mitochondrial-mediated pathway in HeLa cells, Molecular Medicine Reports, 5, 4, 2012. Crossref

  58. della Valle Elena, Marracino Paolo, Pakhomova Olga, Liberti Micaela, Apollonio Francesca, Diversity of monopolar and bipolar nanosecond pulsed electric signals on the metallo-enzyme superoxide dismutase (SOD), a modelling approach, 2017 11th European Conference on Antennas and Propagation (EUCAP), 2017. Crossref

  59. Zharkova L, Romanchenko I, Bolshakov M, Rostov V, Mitochondrial respiration inhibition after exposure to UWB pulses as a possible mechanism of antitumor action, Journal of Physics: Conference Series, 830, 2017. Crossref

  60. Romeo Stefania, Zeni Luigi, Sarti Maurizio, Sannino Anna, Scarfì Maria Rosaria, Vernier P. Thomas, Zeni Olga, Rubinsky Boris, DNA Electrophoretic Migration Patterns Change after Exposure of Jurkat Cells to a Single Intense Nanosecond Electric Pulse, PLoS ONE, 6, 12, 2011. Crossref

  61. ZHANG MIN, XIONG ZHENG-AI, CHEN WEN-JUAN, YAO CHENG-GUO, ZHAO ZHONG-YONG, HUA YUAN-YUAN, Intense picosecond pulsed electric fields inhibit proliferation and induce apoptosis of HeLa cells, Molecular Medicine Reports, 7, 6, 2013. Crossref

  62. Romeo Stefania, Vernier P. Thomas, Zeni Olga, Electroporation-Induced Cell Modifications Detected with THz Time-Domain Spectroscopy, Journal of Infrared, Millimeter, and Terahertz Waves, 39, 9, 2018. Crossref

  63. Vijayarangan Vinodini, Delalande Anthony, Dozias Sebastien, Pouvesle Jean-Michel, Pichon Chantal, Robert Eric, Cold Atmospheric Plasma Parameters Investigation for Efficient Drug Delivery in HeLa Cells, IEEE Transactions on Radiation and Plasma Medical Sciences, 2, 2, 2018. Crossref

  64. Novickij Vitalij, Zinkevičienė Auksė, Stanevičienė Ramunė, Gruškienė Rūta, Servienė Elena, Vepštaitė-Monstavičė Iglė, Krivorotova Tatjana, Lastauskienė Eglė, Sereikaitė Jolanta, Girkontaitė Irutė, Novickij Jurij, Inactivation of Escherichia coli Using Nanosecond Electric Fields and Nisin Nanoparticles: A Kinetics Study, Frontiers in Microbiology, 9, 2018. Crossref

  65. Simeni Simeni Marien, Baratte Edmond, Zhang Cheng, Frederickson Kraig, Adamovich Igor V., Electric Field Measurements in Nanosecond Pulse Discharges in Air over Solid and Liquid Dielectric Surfaces, 2018 AIAA Aerospace Sciences Meeting, 2018. Crossref

  66. Qian Guanhua, Yu Tinghe, Nanosecond Electric Pulses Induce Early and Late Phases of DNA Damage and Cell Death in Cisplatin-Resistant Human Ovarian Cancer Cells, BioMed Research International, 2018, 2018. Crossref

  67. Simeni Marien Simeni, Baratte Edmond, Zhang Cheng, Frederickson Kraig, Adamovich Igor V, Electric field measurements in nanosecond pulse discharges in air over liquid water surface, Plasma Sources Science and Technology, 27, 1, 2018. Crossref

  68. Ruzgys Paulius, Novickij Vitalij, Novickij Jurij, Šatkauskas Saulius, Nanosecond range electric pulse application as a non-viral gene delivery method: proof of concept, Scientific Reports, 8, 1, 2018. Crossref

  69. Vadlamani Anand, Detwiler David A., Dhanabal Agni, Garner Allen L., Synergistic bacterial inactivation by combining antibiotics with nanosecond electric pulses, Applied Microbiology and Biotechnology, 102, 17, 2018. Crossref

  70. Hu Q, Hossain S, Joshi R P, Analysis of a dual shock-wave and ultrashort electric pulsing strategy for electro-manipulation of membrane nanopores, Journal of Physics D: Applied Physics, 51, 28, 2018. Crossref

  71. Gilmore Brendan F., Flynn Padrig B., O’Brien Séamus, Hickok Noreen, Freeman Theresa, Bourke Paula, Cold Plasmas for Biofilm Control: Opportunities and Challenges, Trends in Biotechnology, 36, 6, 2018. Crossref

  72. Yu Tinghe, Wu Minghe, Huang Ping, Hu Lina, Modulating Apoptosis in Cancer Therapy with Ultrasound and High-Intensity Nanosecond Electric Pulses, in Trends in Stem Cell Proliferation and Cancer Research, 2013. Crossref

  73. Cifra Michal, Prusa Jiri, Havelka Daniel, Krivosudsky Ondrej, Water Models in Molecular Dynamics Simulation Prediction of Dielectric Properties of Biomaterials, IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 3, 2, 2019. Crossref

  74. Karagiannis Andreas, Varkarakis John, Irreversible Electroporation for the Ablation of Prostate Cancer, Current Urology Reports, 20, 10, 2019. Crossref

  75. Ruzgys Paulius, Novickij Vitalij, Novickij Jurij, Šatkauskas Saulius, Influence of the electrode material on ROS generation and electroporation efficiency in low and high frequency nanosecond pulse range, Bioelectrochemistry, 127, 2019. Crossref

  76. van den Bos Willemien, Muller Berrend G., de Bruin Daniel M., de la Rosette Jean J. M. C. H., Minimally Invasive Therapies for Pelvic Urological Cancer, in Pelvic Cancer Surgery, 2015. Crossref

  77. Qiu Hao, Wang Xianping, Joshi Ravindra Prabhakar, Zhao Wenbing, Numerical Study to Probe Effects of Strain Energy on Pore Formation and Their Density Distribution, IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 3, 4, 2019. Crossref

  78. Hu Q., Zhang L., Joshi R. P., Numerical evaluations of membrane poration by shockwave induced multiple nanobubble collapse in presence of electric fields for transport through cells, AIP Advances, 9, 4, 2019. Crossref

  79. Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz), Health Physics, 118, 5, 2020. Crossref

  80. Qian Junjie, Liu Jianpeng, Hong Liangjie, Lu Haohao, Guo Danjing, Liu Zhen, Zhou Lin, Yin Shengyong, Zheng Shusen, Upregulation of PDGF Mediates Robust Liver Regeneration after Nanosecond Pulsed Electric Field Ablation by Promoting the HGF/c-Met Pathway, BioMed Research International, 2020, 2020. Crossref

  81. Butkus Paulius, Murauskas Arūnas, Tolvaišienė Sonata, Novickij Vitalij, Concepts and Capabilities of In-House Built Nanosecond Pulsed Electric Field (nsPEF) Generators for Electroporation: State of Art, Applied Sciences, 10, 12, 2020. Crossref

  82. Rao Xin, Chen Xiaodong, Zhou Jun, Sun Lingling, Liu Jun, A Digital Controlled Pulse Generator for a Possible Tumor Therapy Combining Irreversible Electroporation With Nanosecond Pulse Stimulation, IEEE Transactions on Biomedical Circuits and Systems, 14, 3, 2020. Crossref

  83. Hu Qin, Joshi Ravi P., Miklavcic Damijan, Calculations of Cell Transmembrane Voltage Induced by Time-Varying Magnetic Fields, IEEE Transactions on Plasma Science, 48, 4, 2020. Crossref

  84. Yin Shengyong, Liu Zhen, Mashayekh Amir Shahriar, Guo Danjing, Qian Junjie, Wang Yubo, Deng Guanlei, Zheng Chao, Ma Zhenhong, Zhou Lin, Yan Keping, Zheng Shusen, Ultrastructural changes in hepatocellular carcinoma cells induced by exponential pulses of nanosecond duration delivered via a transmission line, Bioelectrochemistry, 135, 2020. Crossref

  85. Prathyusha K. R., Pagonabarraga Ignacio, Kumar P. B. Sunil, Modification of lipid membrane compressibility induced by an electric field, Physical Review E, 102, 6, 2020. Crossref

  86. Butkus Paulius, Research and development of the high-frequency square-wave pulse electroporation system, 2020. Crossref

  87. Qian Junjie, Chen Tianchi, Wu Qinchuan, Zhou Lin, Zhou Wuhua, Wu Liming, Wang Shuai, Lu Jiahua, Wang Wenchao, Li Dazhi, Xie Haiyang, Su Rong, Guo Danjing, Liu Zhen, He Ning, Yin Shengyong, Zheng Shusen, Blocking exposed PD-L1 elicited by nanosecond pulsed electric field reverses dysfunction of CD8+ T cells in liver cancer, Cancer Letters, 495, 2020. Crossref

  88. Joshi Ravi, Probing Potential for Cellular Stimulation by Time-Varying Magnetic Fields, in Ultrashort Electric Pulse Effects in Biology and Medicine, 2021. Crossref

  89. Joshi Ravi, Synergy Between Electric Pulsing and Shock Waves for Cell Poration, in Ultrashort Electric Pulse Effects in Biology and Medicine, 2021. Crossref

  90. Joshi Ravi, Simulations of Membrane Effects of Cells After Exposure to Ultrashort Pulses, in Ultrashort Electric Pulse Effects in Biology and Medicine, 2021. Crossref

  91. Son Reuben S., Smith Kyle C., Gowrishankar Thiruvallur R., Vernier P. Thomas, Weaver James C., Basic Features of a Cell Electroporation Model: Illustrative Behavior for Two Very Different Pulses, The Journal of Membrane Biology, 247, 12, 2014. Crossref

  92. Joshi Ravi, Comparison Between Monopolar and Bipolar Pulses for Effective Nanoporation, in Ultrashort Electric Pulse Effects in Biology and Medicine, 2021. Crossref

  93. Průša Jiří, Ayoub Ahmed Taha, Chafai Djamel Eddine, Havelka Daniel, Cifra Michal, Electro-opening of a microtubule lattice in silico, Computational and Structural Biotechnology Journal, 19, 2021. Crossref

  94. Hu Q., Joshi R. P., Continuum analysis to assess field enhancements for tailoring electroporation driven by monopolar or bipolar pulsing based on nonuniformly distributed nanoparticles, Physical Review E, 103, 2, 2021. Crossref

  95. Novickij Vitalij, Baleviciute Austeja, Malysko Veronika, Zelvys Augustinas, Radzeviciute Eivina, Kos Bor, Zinkeviciene Aukse, Miklavcic Damijan, Novickij Jurij, Girkontaite Irute, Effects of Time Delay Between Unipolar Pulses in High Frequency Nano-Electrochemotherapy, IEEE Transactions on Biomedical Engineering, 69, 5, 2022. Crossref

  96. Costa Jorge A., de Oliveira Pedro X., Pereira Lucenara S., Rodrigues Jessica, Suzuki Daniela O. H., Sensitivity Analysis of a Nuclear Electroporation Model—A Theoretical Study, IEEE Transactions on Dielectrics and Electrical Insulation, 28, 6, 2021. Crossref

  97. Wang Douyan, Hayashi Yu, Enoki Takahiro, Nakahara Kenta, Arita Tetsuya, Higashi Yuya, Kuno Yasuharu, Terazawa Tatsuya, Namihira Takao, Influence of Pulsed Electric Fields on Photosynthesis in Light/Dark-Acclimated Lettuce, Agronomy, 12, 1, 2022. Crossref

  98. Průša Jiří, Cifra Michal, Dependence of amino-acid dielectric relaxation on solute-water interaction: Molecular dynamics study, Journal of Molecular Liquids, 303, 2020. Crossref

  99. Novickij Vitalij, Staigvila Gediminas, Murauskas Arūnas, Rembialkowska Nina, Kulbacka Julita, Novickij Jurij, High Frequency Bipolar Electroporator with Double-Crowbar Circuit for Load-Independent Forming of Nanosecond Pulses, Applied Sciences, 12, 3, 2022. Crossref

  100. Sun Shuxin, Liu Yang, He Chaobin, Hu Wanming, Liu Wenfeng, Huang Xin, Wu Jiali, Xie Fengxiao, Chen Chen, Wang Jun, Lin Yuan, Zhu Wenbo, Yan Guangmei, Cai Jing, Li Shengping, Combining NanoKnife with M1 oncolytic virus enhances anticancer activity in pancreatic cancer, Cancer Letters, 502, 2021. Crossref

  101. Milestone W., Hu Q., Loveless A. M., Garner A. L., Joshi R. P., Modeling coupled single cell electroporation and thermal effects from nanosecond electric pulse trains, Journal of Applied Physics, 132, 9, 2022. Crossref

  102. Nordhagen Else K., Flydal Einar, Self-referencing authorships behind the ICNIRP 2020 radiation protection guidelines, Reviews on Environmental Health, 2022. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain