ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN 印刷: 0278-940X
ISSN オンライン: 1943-619X

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2016016063
pages 433-454

Blood Vessel Maturation in Health and Disease and its Implications for Vascularization of Engineered Tissues

Xuetao Sun
University Health Network, Toronto General Research Institute, Ontario, Canada
Sevan Evren
University Health Network, Toronto General Research Institute, Ontario, Canada
Sara S. Nunes
University Health Network, Toronto General Research Institute, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada; Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Ontario, Canada

要約

Engineered blood vessels have often been found to be immature and unstable. Similarly, numerous pathologies such as diabetic retinopathy and cancer are characterized by highly abnormal, defective, hypervascular networks, consisting of immature, leaky, and irregular vessels with a marked loss of perivascular cell coverage. An emerging therapeutic concept in treatment of such vascular diseases and their management is the potential to normalize blood vessels by strengthening the cellular components that form the vascular network. Vessel normalization is characterized by the reduction in the number and size of immature vessels, a decrease in interstitial fluid pressure, and increase in perivascular cell coverage. Understanding the molecular and cellular defects associated with abnormal blood vessels will allow us to find appropriate treatment options that can promote normal blood vessel development. These, in turn, can be applied to improve vessel maturation in engineered tissues. In this review, we describe the major perivascular abnormalities associated with various human diseases and engineered vasculatures and the major advances in obtaining mature vasculatures for translational applications.


Articles with similar content:

Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs
Critical Reviews™ in Biomedical Engineering, Vol.43, 2015, issue 5-6
Bo Wang, Bryn Brazile, Andrew Claude, Jianjun Guan, Yi Hong, Ge Zhang, J. Ryan Butler, Sourav S. Patnaik, Jun Liao
Tissue Engineering Approaches to Heart Repair
Critical Reviews™ in Biomedical Engineering, Vol.42, 2014, issue 3-4
Ann Foley, Yunkai Dai
MicroRNAs in Human Lymphoblastoid Cell Lines
Critical Reviews™ in Eukaryotic Gene Expression, Vol.22, 2012, issue 3
Jun-Woo Kim, Jae-Eun Lee, Bok-Ghee Han, Jae-Pil Jeon, Sung-Mi Shim, Hye-Young Nam
The Family of Retinoblastoma Proteins
Critical Reviews™ in Eukaryotic Gene Expression, Vol.11, 2001, issue 1-3
Antonio Giordano, Peter Stiegler
Tissue Engineering of Cardiac Valves on the Basis of PGA/PLA Co-Polymers
Journal of Long-Term Effects of Medical Implants, Vol.11, 2001, issue 3&4
Ulrich A. Stock, John E. Mayer, Jr.