ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Enhanced Heat Transfer
インパクトファクター: 0.562 5年インパクトファクター: 0.605 SJR: 0.175 SNIP: 0.361 CiteScore™: 0.33

ISSN 印刷: 1065-5131
ISSN オンライン: 1026-5511

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.2018019982
pages 61-78

ENHANCED HEAT TRANSFER OF Cu-WATER NANOFLUID IN A CHANNEL WITH WALL MOUNTED BLUNT RIBS

Sanjib Kr Pal
Department of Mathematics, Indian Institute of Technology, Kharagpur, India
Somnath Bhattacharyya
Department of Mathematics, Indian Institute of Technology, Kharagpur, India

要約

A numerical study on the heat transfer characteristics of the Cu-water nanofluid within a heated patterned channel is made. One wall of the channel is patterned by placing surface mounted blunt ribs. The objective of this study is to analyze enhanced heat transfer performance in a thin channel by using nanofluid as a cooling fluid combined with geometric modulation of the channel walls. The flow and thermal field are analyzed for a wide range of Reynolds number, based on the incoming flow and channel height, and nanoparticle volume fraction. The heat transfer performance is studied by evaluating the rate of heat transfer, entropy generation, pressure drop, and thermal performance factor. A single-phase model is adopted to analyze the nanofluid flow and heat transfer. Increase in nanoparticle volume fraction produces an increment in heat transfer as well as entropy generation. The wall mounted protrusion creates a flow separation and the recirculation eddy downstream of the protrusion grows with the increase of the nanoparticle volume fraction. The present study shows that a multiple number of ribs creates an enhanced heat transfer with reduced thermal performance compared to a single rib. An increase in nanoparticle volume fraction increases the thermal performance.


Articles with similar content:

HEAT TRANSFER ENHANCEMENT IN A RADIAL FLOW COOLING SYSTEM USING NANOFLUIDS
ICHMT DIGITAL LIBRARY ONLINE, Vol.11, 2004, issue
Cong Tam Nguyen, Gilles C. Roy, Samy Joseph Palm
MIXED CONVECTION FLUID FLOW AND HEAT TRANSFER OF THE Al2O3−WATER NANOFLUID WITH VARIABLE PROPERTIES IN A CAVITY WITH AN INSIDE QUADRILATERAL OBSTACLE
Heat Transfer Research, Vol.46, 2015, issue 5
Hamid Teimouri, Masoud Afrand, Arash Karimipour, Mohammad Hemmat Esfe, Mohammaj javad Noroozi, Amir Hossein Refahi
NUMERICAL STUDY OF NANOFLUID HEAT TRANSFER ENHANCEMENT WITH MIXING THERMAL CONDUCTIVITY MODELS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Anchasa Pramuanjaroenkij, Sadik Kakac, Apichart Chaengbamrung , Amarin Tongkratoke
ENTROPY GENERATION ANALYSIS OF FORCED CONVECTION FLOW IN A SEMICIRCULAR MICROCHANNEL WITH TiO2/WATER NANOFLUID
Heat Transfer Research, Vol.50, 2019, issue 4
H. Kaya, Recep Ekiciler, Kamil Arslan
Augmented Forced Convective Cooling of an Isoflux-Heated Section in a Channel with an Inserted Rhombic Deflector
Heat Transfer Research, Vol.39, 2008, issue 2
Antonio Campo