ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Enhanced Heat Transfer
インパクトファクター: 0.562 5年インパクトファクター: 0.605 SJR: 0.175 SNIP: 0.361 CiteScore™: 0.33

ISSN 印刷: 1065-5131
ISSN オンライン: 1026-5511

Journal of Enhanced Heat Transfer

DOI: 10.1615/JEnhHeatTransf.v12.i4.50
pages 357-371

Numerical Prediction of the Performances of the Fins with Punched Delta Winglets and the Louver Fins and Their Comparison

Jingchun Min
2Department of Engineering Mechanics, Tsinghua University, No. 1, Qinghua Yuan, Haidian District, Beijing 100084, China
Wei Xu
The Key Lab of Education Ministry for Enhanced Heat Transfer and Energy Conversion, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

要約

Performances of the plain fin, the fins with punched delta winglets, and the louver fin used in a flat-tube heat exchanger application were numerically predicted and compared, with the plain fin serving as the baseline fin. Calculations were made in three dimensions and account for conduction within the fin for two frontal air velocities of 1.0 and 4.0 m/s, yielding fin-pitch-based Reynolds numbers of 210 and 840. The time-dependent laminar flow model was adopted in the calculations. As compared to the plain fin, the louver fin enhances heat transfer by 114.1−139.1% while the fin with three winglet rows enhances heat transfer by 46.5−76.1%, indicating that the enhancement level of the louver fin is considerably higher than that of the fin with winglets. The j to f factor ratio of the louver fin is smaller than that of the fin with three winglet rows, but the j to f1/3 ratio of the former is greater than that of the latter, so the louver fin is superior to the fin with winglets, if the ratio j/f1/3 is used as the performance evaluation criterion. The spanwise averaged heat-transfer coefficient of the louver fin varies significantly along the streamwise direction, sharp peaks appear over the fin region, each peak corresponds to each of the leading edges of the louvers, while the minima occur at the slits between two consecutive louvers. The spanwise averaged heat-transfer coefficient of the fin with winglets exhibits a more gentle variation along the streamwise direction, it increases at winglets and decays over the winglet-free regions.


Articles with similar content:

DEVELOPMENT OF WAKE VORTICES AND THE ASSOCIATED SOUND RADIATION IN THE FLOW PAST A RECTANGULAR CYLINDER OF VARIOUS ASPECT RATIOS
TSFP DIGITAL LIBRARY ONLINE, Vol.7, 2011, issue
Takuya Nakano, Ayumu Inasawa, Masahito Asai
COMPARISON OF THE PERFORMANCES BETWEEN THE CHANNEL AND THE CORRUGATED CHANNEL OF THE SPHERICAL CONVEX/CONCAVE FIN
Second Thermal and Fluids Engineering Conference, Vol.31, 2017, issue
Li-Min Chang, Liang-Bi Wang, Jian Liu, Yong-Heng Zhang, Liang-Chen Wang, Peng Guo
CuO/WATER NANOFLUID FLOW OVER MICROSCALE BACKWARD-FACING STEP AND ANALYSIS OF HEAT TRANSFER PERFORMANCE
Heat Transfer Research, Vol.49, 2018, issue 15
Recep Ekiciler, Kamil Arslan
HIGH PERFORMANCE HEAT EXCHANGER WITH OBLIQUE-WAVE WALLS
International Heat Transfer Conference 13, Vol.0, 2006, issue
Yuji Suzuki, Kenichi Morimoto, Nobuhide Kasagi, Yoshinori Suzue, Naoki Shikazono
A Numerical Study on Fluid Flow and Heat Transfer Performance of Internally Roughened Tubes with Dimples
Journal of Enhanced Heat Transfer, Vol.16, 2009, issue 3
R. Li, Yuan G. Lei, Y. B. Tao, Ya-Ling He, P. Chu