ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Uncertainty Quantification
インパクトファクター: 3.259 5年インパクトファクター: 2.547 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN 印刷: 2152-5080
ISSN オンライン: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2018019782
pages 23-41

COMPARISON OF RISK ANALYSIS METHODOLOGIES IN A GEOSTATISTICAL CONTEXT: MONTE CARLO WITH JOINT PROXY MODELS AND DISCRETIZED LATIN HYPERCUBE

Susana Santos
University of Campinas
Ana Teresa F. S. Gaspar
Department of Energy, School of Mechanical Engineering, University of Campinas, Brazil
Denis J. Schiozer
Department of Energy, School of Mechanical Engineering, University of Campinas, Brazil

要約

During the development of petroleum fields, uncertainty quantification is essential to base decisions. Several methods are presented in the literature, but its choice must agree with the complexity of the case study to ensure reliable results at minimum computational costs. In this study, we compared two risk analysis methodologies applied to a complex reservoir model comprising a large set of geostatistical realizations: (1) a generation of scenarios using the discretized Latin hypercube sampling technique combined with geostatistical realizations (DLHG) and (2) a generation of scenarios using the Monte Carlo sampling technique combined with joint proxy models, entitled the joint modeling method (JMM). For a reference response, we assessed risk using the pure Monte Carlo sampling combined with flow simulation using a very high sampling number. We compared the methodologies, looking at the (1) accuracy of the results, (2) computational cost, (3) difficulty in the application, and (4) limitations of the methods. Our results showed that both methods are reliable but revealed limitations in the JMM. Due to the way the JMM captures the effect of a geostatistical uncertainty, the number of required flow simulation runs increased exponentially and became unfeasible to consider more than 10 realizations. The DLHG method showed advantages in such a context, namely, because it generated precise results from less than half of the flow simulation runs, the risk curves were computed directly from the flow simulation results (i.e., a proxy model was not needed), and incorporated hundreds of geostatistical realizations. In addition, this method is fast, straightforward, and easy to implement.


Articles with similar content:

HP-ADAPTIVE FINITE ELEMENT METHOD FOR MODELING 3-D NATURAL CONVECTIVE HEAT TRANSFER IN A PARTITIONED ENCLOSURE
International Heat Transfer Conference 13, Vol.0, 2006, issue
Darrell W. Pepper, X. Wang
UTILIZING ADJOINT-BASED ERROR ESTIMATES FOR SURROGATE MODELS TO ACCURATELY PREDICT PROBABILITIES OF EVENTS
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 2
Timothy Wildey, Troy Butler
OPTIMIZATION-BASED SAMPLING IN ENSEMBLE KALMAN FILTERING
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 4
Alexander Bibov, Heikki Haario, Antti Solonen, Johnathan M. Bardsley
TOMOGRAPHIC RECONSTRUCTION OF INTERFEROMETRIC PROJECTIONS: ALGEBRAIC RECONSTRUCTION (ART) VERSUS GENETIC ALGORITHM (GA)
International Heat Transfer Conference 11, Vol.9, 1998, issue
H. S. Ko, Kenneth D. Kihm, Donald P. Lyons
HYBRID EXPERIMENTAL-NUMERICAL APPROACH TO SOLVE INVERSE CONVECTION PROBLEMS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Yogesh Jaluria, Joseph R. VanderVeer