ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Uncertainty Quantification
インパクトファクター: 4.911 5年インパクトファクター: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN 印刷: 2152-5080
ISSN オンライン: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2014007778
pages 225-242

A MULTI-FIDELITY STOCHASTIC COLLOCATION METHOD FOR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA

Maziar Raissi
Department of Mathematical Sciences, George Mason University, 4400 University Drive, MS: 3F2, Planetary Hall, Fairfax, Virginia 22030, USA
Padmanabhan Seshaiyer
Department of Mathematical Sciences, George Mason University, 4400 University Drive, MS: 3F2, Planetary Hall, Fairfax, Virginia 22030, USA

要約

Over the last few years there have been dramatic advances in the area of uncertainty quantification. In particular, we have seen a surge of interest in developing efficient, scalable, stable, and convergent computational methods for solving differential equations with random inputs. Stochastic collocation (SC) methods, which inherit both the ease of implementation of sampling methods like Monte Carlo and the robustness of nonsampling ones like stochastic Galerkin to a great deal, have proved extremely useful in dealing with differential equations driven by random inputs. In this work we propose a novel enhancement to stochastic collocation methods using deterministic model reduction techniques. Linear parabolic partial differential equations with random forcing terms are analysed. The input data are assumed to be represented by a finite number of random variables. A rigorous convergence analysis, supported by numerical results, shows that the proposed technique is not only reliable and robust but also efficient.


Articles with similar content:

A GRADIENT-BASED SAMPLING APPROACH FOR DIMENSION REDUCTION OF PARTIAL DIFFERENTIAL EQUATIONS WITH STOCHASTIC COEFFICIENTS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Miroslav Stoyanov, Clayton G. Webster
STUDY OF CONSERVATION APPLIED TO POINT-IMPLICIT INTEGRATION TECHNIQUES FOR UNSTRUCTURED FINITE VOLUME NAVIER−STOKES SOLVERS
Computational Thermal Sciences: An International Journal, Vol.7, 2015, issue 1
Leonardo Costa Scalabrin, Joao Luiz F. Azevedo, Edson Basso, Carlos Junqueira-Junior
DATA ASSIMILATION FOR NAVIER-STOKES USING THE LEAST-SQUARES FINITE-ELEMENT METHOD
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 5
Richard P. Dwight, Alexander Schwarz
A STOPPING CRITERION FOR ITERATIVE SOLUTION OF STOCHASTIC GALERKIN MATRIX EQUATIONS
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 3
Christophe Audouze , Pär Håkansson, Prasanth B. Nair
A STOCHASTIC COLLOCATION METHOD FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH WEAKLY SINGULAR KERNELS AND RANDOM INPUTS
International Journal for Uncertainty Quantification, Vol.10, 2020, issue 2
Lijun Yi, Ling Guo