ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Uncertainty Quantification
インパクトファクター: 4.911 5年インパクトファクター: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN 印刷: 2152-5080
ISSN オンライン: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2019026936
pages 123-142

RANDOM REGULARITY OF A NONLINEAR LANDAU DAMPING SOLUTION FOR THE VLASOV-POISSON EQUATIONS WITH RANDOM INPUTS

Zhiyan Ding
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706, USA
Shi Jin
School of Mathematical Sciences, Institute of Natural Sciences, MOE-LSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240, China

要約

In this paper, we study the nonlinear Landau damping solution of the Vlasov-Poisson equations with random inputs from the initial data or equilibrium, for the solution studied by Hwang and Velázquez smoothly on the random input, if the long-time limit distribution function has the same smoothness, under some smallness assumptions. We also establish the decay of the higher-order derivatives of the solution in the random variable, with the same decay rate as its deterministic counterpart.

参考

  1. Landau, L.D., On the Vibration of the Electronic Plasma, J. Phys. USSR, 10(25):25–34, 1946.

  2. Degond, P., Spectral Theory of the Linearized Vlasov-Poisson Equation, Trans. Am. Math. Sci., 294(2):435–453, 1986.

  3. Glassey, R. and Schaeff J., Time Decay for Solutions to the Linearized Vlasov Equation, Transp. Theory Stat. Phys., 23(4):411–453, 1994.

  4. Caglioti, E. and Maffei, C., Time Asymptotics for Solutions of Vlasov-Poisson Equation in a Circle, J. Stat. Phys., 92(1):301– 323, 1998.

  5. Hwang, H.J. and Velazquez, J., On the Existence of Exponentially Decreasing Solutions of the Nonlinear Landau Damping Problem, Indiana Univ. Math. J., 58(6):2623–2660, 2009.

  6. Mouhot, C. and Villani, C., On Landau Damping, Acta Math., 207(1):29–201, 2011.

  7. Bedrossian, J., Masmoudi, N., and Mouhot, C., Landau Damping: Paraproducts and Gevrey Regularity, Ann. PDE, 2:4, 2016.

  8. Smith, R., Uncertainty Quantification: Theory, Implementation, and Applications, Philadelphia: SIAM, 2013.

  9. Babuska, I., Tempone, R., and Zouraris, G., Galerkin Finite Element Approximations of Stochastic Elliptic Diffitial Equations, SIAM J. Numer. Anal., 42(2):800–825, 2004.

  10. Nobile, F. and Tempone, R., Analysis and Implementation Issues for the Numerical Approximation of Parabolic Equations with Random Coefficients, Int. J. Numer. Methods. Eng., 80(6):979–1006, 2009.

  11. Motamed, M., Nobile, F., and Tempone, R., Stochastic Collocation Method for the Second Wave Equation with a Discontinuous Random Speed, Numer. Math., 123(3):493–536, 2013.

  12. Tang, T. and Zhou, T., Convergence Analysis for Stochastic Collocation Methods to Scalar Hyperbolic Equations with a Random Wave Speed, Commun. Comput. Phys., 8(1):226–248, 2010.

  13. Jin, S., Liu, J., and Ma, Z., Uniform Spectral Convergence of the Stochastic Galerkin Method for the Linear Transport Equations with Random Inputs in Diffusive Regime and a Micro-Macro Decomposition based Asymptotic Preserving Method, Res. Math. Sci., 4:15,2017.

  14. Li, Q. and Wang, L., Uniform Regularity for Linear Kinetic Equations with Random Input based on Hypocoercivity, SIAM/ASA J. Uncertainty Quantif., 5(1):1193–1219, 2018.

  15. Jin, S. and Zhu, Y., Hypocoercivity and Uniform Regularity for the Vlasov-Poisson-Fokker-Planck System with Uncertainty and Multiple Scales, SIAM J. Math. Anal., 50(2):1790–1816, 2018.

  16. Liu, L. and Jin, S., Hypocoercivity based Sensitivity Analysis and Spectral Convergence of the Stochastic Galerkin Approximation to Collisional Kinetic Equations with Multiple Scales and Random Inputs, Multiscale Model. Simul., 16(3):1085–1114, 2018.

  17. Shu, R. and Jin, S., Uniform Regularity in the Random Space and Spectral Accuracy of Thestochastic Galerkin Method for a Kinetic-Fluid Two-Phase Flow Model with Random Initial Inputs in the Light Particle Regime, ESAIM: M2AN, 52(5):1651– 1678, 2018.

  18. Shu, R. and Jin, S., A Study of Landau Damping with Random Initial Inputs, J. Differ. Eqs., 266(4):1922–1945, 2019.

  19. Shu, R. and Jin, S., Random Regularity of Landau Damping Solution of Mouhot and Villani with Random Inputs, in preparation.

  20. Xiu, D., Fast Numerical Methods for Stochastic Computations: A Review, Commun. Comput. Phys, 5(2):242–272, 2009.

  21. Xiu, D. and Karniadakis, G.E., The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations, SIAM J. Sci. Comput., 24(2):619–644, 2002.


Articles with similar content:

Analytical Solution of Convective Heat Transfer of Oscillating Flow Subject to a Triangular Pressure Waveform
International Journal of Fluid Mechanics Research, Vol.43, 2016, issue 4
Mohammed Abdulhameed, Rozaini Roslan, Ishak Hashim, B. S. Bhadauria
MULTIPLE-SCALE AND NUMERICAL ANALYSES FOR THE NONLINEAR OSCILLATIONS OF A GAS BUBBLE SURROUNDED BY A MAXWELL'S FLUID
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 3
César Yepes, Federico Mendez, Fátima Moumtadi, Margarita Navarrete, Jorge Naude
A MULTI-FIDELITY STOCHASTIC COLLOCATION METHOD FOR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT DATA
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 3
Maziar Raissi, Padmanabhan Seshaiyer
DESIGN-POINT EXCITATION FOR CRACK PROPAGATION UNDER NARROW-BAND RANDOM LOADING
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 6
Jean-Marc Bourinet, Maliki Moustapha, Andre T. Beck
Drag reduction of turbulent channel flow by polymer release from wall
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Akira Murata, Kaoru Iwamoto, Yasuo Kawaguchi, H. Ando, M. Koshi, T. Senda