ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Uncertainty Quantification
インパクトファクター: 4.911 5年インパクトファクター: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN 印刷: 2152-5080
ISSN オンライン: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.v1.i1.30
pages 35-47

PROBABILISTIC PREDICTIONS OF INFILTRATION INTO HETEROGENEOUS MEDIA WITH UNCERTAIN HYDRAULIC PARAMETERS

Peng Wang
Department of Mechanical and Aerospace Engineering, University of California, San Diego, USA
Daniel M. Tartakovsky
Department of Energy Resources, Engineering, Stanford University, 367 Panama St., Stanford, CA 94305, USA

要約

Soil heterogeneity and the lack of detailed site characterization are two ubiquitous factors that render predictions of flow and transport in the vadose zone inherently uncertain. We employ the Green-Ampt model of infiltration and the Dagan- Bresler statistical parameterization of soil properties to compute probability density functions (PDFs) of infiltration rate and infiltration depth. By going beyond uncertainty quantification approaches based on mean and variance of system states, these PDF solutions enable one to evaluate probabilities of rare events that are required for probabilistic risk assessment. We investigate the temporal evolution of the PDFs of infiltration depth and corresponding infiltration rate, the relative importance of uncertainty in various hydraulic parameters and their cross-correlation, and the impact of the choice of a functional form of the hydraulic function.


Articles with similar content:

ESTIMATING THE UNSATURATED SOIL HYDRAULIC PROPERTIES FROM A REDISTRIBUTION EXPERIMENT: APPLICATION TO SYNTHETIC DATA
Journal of Porous Media, Vol.18, 2015, issue 7
Mohammad Nakhaei , Vahab Amiri
PERTURBATION-BASED STOCHASTIC MICROSCOPIC STRESS ANALYSIS OF A PARTICLE-REINFORCED COMPOSITE MATERIAL VIA STOCHASTIC HOMOGENIZATION ANALYSIS CONSIDERING UNCERTAINTY IN MATERIAL PROPERTIES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
F. Ashida, Sei-ichiro Sakata, K. Enya
A MIXED UNCERTAINTY QUANTIFICATION APPROACH USING EVIDENCE THEORY AND STOCHASTIC EXPANSIONS
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Tyler Winter, Serhat Hosder, Harsheel Shah
STOCHASTIC DYNAMIC RESPONSE ANALYSIS OF NONLINEAR STRUCTURES WITH GENERAL NONUNIFORM RANDOM PARAMETERS BY MINIMIZING GL2-DISCREPANCY
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 3
Jianbing Chen, Pengyan Song, Xiaodan Ren
Method of Critical Variances as Analytical Tool of Theory of Inductive Modeling
Journal of Automation and Information Sciences, Vol.40, 2008, issue 3
Vladimir S. Stepashko