ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Flow Visualization and Image Processing
SJR: 0.161 SNIP: 0.312 CiteScore™: 0.1

ISSN 印刷: 1065-3090
ISSN オンライン: 1940-4336

Journal of Flow Visualization and Image Processing

DOI: 10.1615/JFlowVisImageProc.2018028199
pages 57-78

THERMAL AND FLUID CHARACTERISTICS OF SINGLE FIN HEAT SINK WITH A PIEZOELECTRIC COOLING FAN

Heng-Pin Hsu
Department of Mold and Die Engineering, National Kaohsiung University of Science and Technology, 1 University Rd., Yanchao District, Kaohsiung City 824, Taiwan (R.O.C.); Air Force Institute of Technology, Kaohsiung 820, Taiwan
Chao Cheng
Department of Mold and Die Engineering, National Kaohsiung University of Science and Technology, 1 University Rd., Yanchao District, Kaohsiung City 824, Taiwan (R.O.C.)
Hung-Yi Li
Department of Mold and Die Engineering, National Kaohsiung University of Science and Technology, 1 University Rd., Yanchao District, Kaohsiung City 824, Taiwan (R.O.C.)
Tsung-Sheng Sheu
Department of Mechanical Engineering, R.O.C. Military Academy, Zhongli District, Taoyuan City, Taiwan
Herchang Ay
Department of Mold and Die Engineering, National Kaohsiung University of Science and Technology, 1 University Rd., Yanchao District, Kaohsiung City 824, Taiwan (R.O.C.); St. John's University, No. 499, Sec. 4, Tam King Road, Tamsui District, New Taipei City, 25135 Taiwan, R.O.C.

要約

This paper presents a comparative investigation of numerical flow simulations and the experimental data of a piezoelectric fan by particle image velocimetry. It investigates the fluid mechanics of a piezoelectric fan operating in its vibration frequency mode. The experimental results show that the optimal driving frequency for the piezoelectric fan is 60 Hz. At this frequency, the thin blade of the piezoelectric fan reaches its maximum vibration amplitude. The flow field visualization obtained in the experiments shows that the amplitude of the fan blade directly affects flow velocity. The vortex structures exhibit irregular motion once they separate from the blade tip. The phase measured PIV results are presented in terms of vorticity and show the formation of a horse shoe vortex. A maximum flow velocity of 1.7 m/s is obtained. It was also observed that the vibrating blade induces a pair of vortices, one clockwise and one counterclockwise. The blade vibration induces a pair of vortices around the blade tip. The blade inhale and propulsion air flow induces a jet-like motion at the tip during a cycle. Its fast blade motion achieves thermal cooling.


Articles with similar content:

On the Unsteady Wake for Flow Past Transversally Vibrating Square Cylinder
International Journal of Fluid Mechanics Research, Vol.37, 2010, issue 4
Pratish P. Patil, Shaligram Tiwari
Transitional separation bubbles over swept wings
TSFP DIGITAL LIBRARY ONLINE, Vol.10, 2017, issue
Nicola De Tullio, Neil D. Sandham
Closed-Loop Control of The Resonant Flow-Structure Interaction Using PIO Controller
TSFP DIGITAL LIBRARY ONLINE, Vol.3, 2003, issue
Yu Zhou, P. Li, L. Cheng, M. M. Zhang
UNSTEADY SEPARATION CONTROL USING SPATIALLY-COMPACT PULSED ACTUATION
TSFP DIGITAL LIBRARY ONLINE, Vol.8, 2013, issue
George Tak Kwong Woo, Ari Glezer
Numerical Simulation of Turbulent Flows for Free and Forced Vibrations of Bodies in a Flow
Heat Transfer Research, Vol.39, 2008, issue 8
N. A. Shchur, Dmitri K. Zaitsev