ライブラリ登録: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

年間 4 号発行

ISSN 印刷: 1093-3611

ISSN オンライン: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

STRUCTURE OF THE AUSTENITIC STEEL SURFACE LAYER SUBJECTED TO COMPRESSION PLASMA FLOWS IMPACT

巻 24, 発行 3, 2020, pp. 211-225
DOI: 10.1615/HighTempMatProc.2020036411
Get accessGet access

要約

Austenitic steel (18% Cr, 10% Ni) surface layer structure, phase and element composition after compression plasma flows treatment (at the energy absorbed by the surface layer 25 J/cm2 per pulse) have been investigated in this work. The findings showed that plasma impact led to the formation of the crystallized after-melting layer with the thickness of ~ 20 μm after 7 plasma pulses containing columnar-like crystallites of γFe with the diameter of ~ 0.5 μm grown in the <100> direction and oriented almost perpendicularly to the surface. The weight loss of steel samples was linearly dependent on the number of pulses. The mean value of the weight loss for steel during plasma impact was 2.6 mg/cm2 per pulse, which was greater than that for iron (0.74 mg/cm2 per pulse). The interaction of oxygen from the vacuum chamber and outward diffusion of titanium and aluminum from the bulk of steel resulted in the formation of the surface discontinuous oxide film containing Ti and Al atoms.

参考
  1. Alimov, V.Kh., Hatano, Y., Yoshida, N., Bobyr, N.P., Oyaidzu, M., Tokitani, M., and Hayashi, T., Surface Morphology of F82h Steel Exposed to Low-Energy D Plasma at Elevated Temperatures, J. Nucl. Mater., vol. 510, pp. 366-372, 2018a.

  2. Alimov, V.Kh., Ogorodnikova, O.V., Hatano, Y., Gasparyan, Yu.M., Efimov, V.S., Mayer, M., Zhou, Z., Oyaizu, M., Isobe, K., Nakamura, H., and Hayashi, T., Surface Modification and Deuterium Retention in Reduced-Activation Steels Exposed to Low-Energy, High-Flux Pure and Helium-Seeded Deuterium Plasmas, J. Nucl. Mater., vol. 502, pp. 1-8, 2018b.

  3. Cabet, C., Dalle, F., Gaganidze, E., Henry, J., and Tanigawa, H., Ferritic-Martensitic Steels for Fission and Fusion Applications, J. Nucl. Mater., vol. 523, pp. 510-537, 2019.

  4. Cahn, R.W. and Haasen, P., Eds., Physical Metallurgy, vol. 2, New York: Elsevier Science, 1996.

  5. Cherenda, N.N., Shimanskii, V.I., Uglov, V.V., Astashinskii, V.M., and Ukhov, V.A., Nitriding of Steel and Titanium Surface Layers under the Action of Compression Plasma Flows, J. Surf. Investig. X-ray, Synchrotron Neutron Tech., vol. 6, no. 2, pp. 319-325, 2012.

  6. Cherenda, N.N., Uglov, V.V., Anishchik, V.M., Stalmashonak, A.K., Astashinski, V.M., Kuzmitski, A.M., Thorwarth, G., and Stritzker, B., Modification of AISI M2 Steel Tribological Properties by Means of Plasma Mixing, Vacuum, vol. 81, no. 10, pp. 1337-1340, 2007.

  7. Cherenda, N.N., Uglov, V.V., Poluyanova, M.G., Astashynski, V.M., Kuzmitski, A.M., Pogrebnjak, A.D., and Stritzker, B., The Influence of the Coating Thickness on the Phase and Element Composition of a "Ti Coating/Steel" System Surface Layer Treated by a Compression Plasma Flow, Plasma Process. Polym., no. 6, pp. S178-S182, 2009.

  8. Elanskii, G.N., Structure and Properties of Metal Melts, Teaching Aid for Higher School, Moscow, Russia: Metallurgiya Press, 1991.

  9. Feugeas, J., Rico, L., Nosei, L., Gomez, B., Bemporad, E., Lesage, J., and Ferron, J., Austenite Modification of AISI 316L SS by Pulsed Nitrogen Ion Beams Generated in Dense Plasma Focus Discharges, Surf. Coat. Technol., vol. 204, pp. 1193-1199, 2010.

  10. Fulger, M., Mihalache, M., Ohai, D., Fulger, S., and Valeca, S.C., Analyses of Oxide Films Grown on AISI 304L Stainless Steel and Incoloy 800HT Exposed to Supercritical Water Environment, J. Nucl. Mater., vol. 415, pp. 147-157, 2011.

  11. Garkusha, I.E., Makhlaj, V.A., Chebotarev, V.V., Landman, I., Tereshin, V.I., Aksenov, N.N., and Bandura, A.N., Experimental Study of Plasma Energy Transfer and Material Erosion under ELM-like Heat Loads, J. Nucl. Mater., vols. 390-391, pp. 814-817, 2009.

  12. Graning, T., Klimenkov, M., Rieth, M., Heintze, C., and Moslang, A., Long-Term Stability of the Micro-structure of Austenitic ODS Steel Rods Produced with a Carbon-Containing Process Control Agent, J. Nucl. Mater., vol. 523, pp. 111-120, 2019.

  13. Gribkov, V.A., Dubrovsky, A.V., Scholz, M., Jednorog, S., Karpinski, L., Tomaszewski, K., Paduch, M., Miklaszewski, R., Pimenov, V.N., Ivanov, L.I., Dyomina, E.V., Maslyaev, S.A., and Orlova, M.A., PF-6-An Effective Plasma Focus as a Source of Ionizing Radiation and Plasma Streams for Application in Material Technology, Biology and Medicine, Nukleonika, vol. 51, no. 1, pp. 55-62, 2006.

  14. Grigoriev, I.S. and Meilikhov, E.Z., Eds., Handbook of Physical Quantities, Moscow, Russia: Energoatomizdat Press, 1991.

  15. Harris, G.B., Quantitative Measurement of Preferred Orientation in Rolled Uranium Bars, Phil. Mag., vol. 43, no. 336, pp. 113-123, 1952.

  16. Hirai, T., Barabash, V., Escourbiac, F., Durocher, A., Ferrand, L., Komarov, V., and Merola, M., ITER Divertor Materials and Manufacturing Challenges, Fusion Eng. Design, vol. 125, pp. 250-255, 2017.

  17. Humphrey, G.L., The Heats of Combustion and Formation of Titanium Nitride (TiN) and Titanium Carbide (TiC), J. Am. Chem. Soc, vol. 73, no. 5, pp. 2261-2263, 1951a.

  18. Humphrey, G.L., The Heats of Formation of TiO, Ti2O3, Ti3O5 and TiO2 from Combustion Calorimetry, J. Am. Chem. Soc., vol. 73, no. 4, pp. 1587-1590, 1951b.

  19. Kudaktsin, R.S., Astashynski, V.M., and Kuzmitski, A.M., Influence of Evaporation and Hydrodynamics Effects on Surface Modification of Metals under the Action of Compression Plasma Flows, High Temp. Mater. Process.: An Int. Quart. High-Technol. Plasma Process., vol. 23, no. 2, pp. 181-194, 2019.

  20. Leyvi, A.Ya., Cherenda, N.N., Uglov, V.V., and Yalovets, A.P., The Impact of a Shock-Compressed Layer on the Mass Transfer of Target Material during Processing Compression Plasma Flows, Resource-Efficient Technol., vol. 3, pp. 222-225, 2017.

  21. Li, Y., Wang, Z., and Wang, L., Surface Properties of Nitrided Layer on AISI 316L Austenitic Stainless Steel Produced by High Temperature Plasma Nitriding in Short Time, Appl. Surf. Sci., vol. 298, pp. 243-250, 2014.

  22. Lyakishev, N.P., Ed., Phase Diagrams of Binary Metal Systems: Handbook, vol. 1, Moscow, Russia: Mashinostroenie Press, 1996.

  23. Lyakishev, N.P., Ed., Phase Diagrams of Binary Metal Systems: Handbook, vol. 3, Part 1, Moscow, Russia: Mashinostroenie Press, 2001.

  24. Makhlaj, V.A., Aksenov, N.N., Byrka, O.V., Chunadra, A.G., Herashchenko, S.S., Malykhin, S.V., Mikhailov, I.F., Sereda, K.N., and Surovitskiy, S.V., Alloying and Modification of Stainless Steels by Powerful Plasma Streams, Probl. Atomic Sci. Technol., Ser.: Plasma Phys., vol. 32, no. 6, pp. 129-132, 2016.

  25. Maziasz, P. J. and Busby, J.T., Properties of Austenitic Steels for Nuclear Reactor Applications, Comprehens. Nucl. Mater., vol. 2, pp. 267-283, 2012.

  26. Molleja, J.G., Milanese, M., Piccoli, M., Moroso, R., Niedbalski, J., Nosei, L., Burgi, J., Bemporad E., and Feugeas, J., Stability of Expanded Austenite, Generated by Ion Carburizing and Ion Nitriding of AISI316L SS, under High Temperature and High Energy Pulsed Ion Beam Irradiation, Surf. Coat. Technol., vol. 218, pp.142-151, 2013.

  27. Naujoks, D., Plasma-Material Interaction in Controlled Fusion, Berlin-Heidelberg, Germany: Springer-Verlag, 2006.

  28. Nizhenko, V.I. and Floka, L.I., Surface Tension of Liquid Metals and Alloys (One- and Two-Component Systems): A Handbook, Moscow, Russia: Metallurgiya Press, 1981.

  29. Plotnikov, S.V., Yerdybaeva, N.K., Kolodeshnikov, A.A., Zuev, V.A., Ignashev, V.I., Tulenbergenov, T.R., and Sokolov, I.A., Titanium Segregation on the Surface of 12Kh18N10T Steel under the Action of an Electron Beam, Tech. Phys., vol. 58, no. 12, pp. 1817-1821, 2013.

  30. Salama, E., Eissa, M.M., and Tageldin, A.S., Distinct Properties of Tungsten Austenitic Stainless Alloy as a Potential Nuclear Engineering Material, Nucl. Eng. Technol., vol. 51, pp. 784-791, 2019.

  31. Sari, A.H., Astashynski, V.M., Kostyukevich, E.A., Uglov, V.V., and Cherenda, N.N., Alloying of Austenitic Steel Surface with Zirconium using Nitrogen Compression Plasma Flow, Vacuum, vol. 115, pp. 39-45, 2015.

  32. Sartowska, B., Piekoszewski, J., Walis, L., Senatorski, J., Barlak, M., Starosta, W., Pochrybniak C., and Pokorska, I., Improvement of Tribological Properties of Stainless Steel by Alloying Its Surface Layer with Rare Earth Elements Using High Intensity Pulsed Plasma Beams, Surf. Coat. Technol., vol. 205, pp. S124-S127, 2011.

  33. Tereshin, V.I., Garkusha, I.E., Bandura, A.N., Byrka, O.V., Chebotarev, V.V., Makhlaj, V.A., Solyakov, D.G., and Wuerz, H., Influence of Plasma Pressure Gradient on Melt Layer Macroscopic Erosion of Metal Targets in Disruption Simulation Experiments, J. Nucl. Mater., vols. 313-316, pp. 685-689, 2003.

  34. Uglov, V. V., Anishchik V.M., Astashynski, V. V., Astashynski, V.M., Ananin, S.I., Askerko, V. V., Kostyukevich, E.A., Kuz'mitski, A.M., Kvasov, N.T., and Danilyuk, A.L., The Effect of Dense Compression Plasma Flow on Silicon Surface Morphology, Surfa. Coat. Technol., vols. 158-159, pp. 273-276, 2002.

  35. Was, G.S. and Ukai, S., Austenitic Stainless Steels, in Structural Alloys for Nuclear Energy Applications, G.R. Odette and S.J. Zinkle, Eds., pp. 293-347, New York: Elsevier, 2019.

  36. Yang, S., Lee, J., Kang, H., Chang, M.H., and Oda, T., Tritium and Helium Embrittlement of Austenitic Steels Used in Tritium Storage and Delivery System, J. Nucl. Mater, vol. 540, pp. 152349-11, 2020.

によって引用された
  1. Kozlov Andrei N., Flows of ionizing gas in the plasma accelerator channel with longitudinal magnetic field, Physics of Fluids, 34, 10, 2022. Crossref

1055 記事の閲覧数 15 記事のダウンロード 記事の統計
1055 記事の閲覧数 15 記事のダウンロード 1 Crossref 引用数 Google
Scholar
引用数

類似内容の記事:

COMPRESSION PLASMA FLOW INTERRACTION WITH TITANIUM-ON-STEEL SYSTEM: STRUCTURE AND MECHANICAL PROPERTIES High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.8, 2004, issue 4
V. M. Anishchik, Nikolai N. Cherenda, A. K. Stalmashonak, A. V. Punko, V. M. Astashinski, Anton M. Kuzmitski, Vladimir V. Uglov
FILM–SUBSTRATE SURFACE ALLOY FORMED BY AN INTENSE PULSED ELECTRON BEAM High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.21, 2017, issue 4
E. A. Petrikova, P. V. Moskvin, Nikolay N. Koval, Yurii F. Ivanov, O. S. Tolkachev, Olga V. Krysina
THE FORMATION OF SURFACE Ti-Al-V-Cu ALLOY BY COMBINED ION-PLASMA TREATMENT High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.26, 2022, issue 1
A. V. Basalai, Alexandra B. Petukh, A. P. Laskovnev, Valiantsin M. Astashynski, Nikolai N. Cherenda, Anton M. Kuzmitski, A. Yu. Isobello, Vladimir V. Uglov
STEEL 45 SURFACE MODIFICATION BY A COMBINED ELECTRON-ION-PLASMA METHOD High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.19, 2015, issue 1
I. A. Ikonnikova, Yu. A. Denisova, O. V. Ivanova, V. E. Gromov, Yurii F. Ivanov, E. A. Budovskikh, S. Yu. Filimonov
AUSTENITIC STEEL SURFACE ALLOYED WITH ZIRCONIUM USING COMPRESSION PLASMA FLOW High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.16, 2012, issue 4
Valiantsin M. Astashynski, Nikolai N. Cherenda, E. A. Kostyukevich, Anton M. Kuzmitski, A. H. Sari, Vladimir V. Uglov, Yu. A. Petukhou
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain