ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
SJR: 0.176 SNIP: 0.48 CiteScore™: 1.3

ISSN 印刷: 1093-3611
ISSN オンライン: 1940-4360

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.2020033859
pages 65-79

TWO-DIMENSIONAL MODEL OF HIGH-TEMPERATURE SYNTHESIS OF AN INTERMETALLIC IN THE REGIME OF DYNAMIC THERMAL EXPLOSION

Natalia V. Bukrina
Institute of Strength Physics and Materials Science (ISPMS), Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii Ave., Tomsk, 634055, Russia
Anna G. Knyazeva
National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050, Russia; Institute of Strength Physics and Materials Science (ISPMS), Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii Ave., Tomsk, 634055, Russia

要約

The paper suggests a two-dimensional model of high-temperature synthesis of an intermetallic in the regime of dynamic thermal explosion after the heating of the powder compact in a cylindrical reactor. The mathematical formulation includes the thermal conduction equations for the powder mixture with a heat source of chemical nature and for reactor walls without source summands. The set of chemical reactions in the reactive mixture is replaced by the overall reagent-reaction product reaction scheme. The kinetic law takes into consideration severe inhibition of the reaction by the layer of the synthesized product. It is shown that the nonuniform temperature distribution in the powder compact is an important factor determining the dynamics of the process and the completeness of transformation.

参考

  1. Aldushin, A.P., Martem'yanova, T.M., Merzhanov A.G., Khaikin, B.I., and Shkadinskii, K.G., Propagation of the Front of an Exothermic Reaction in Condensed Mixtures with the Integration of the Components through a Layer of High-Melting Product, Combust. Explos. Shock Waves, vol. 8, no. 2, pp. 159-167, 1972a. DOI: https://doi.org/10.1007/BF00740444.

  2. Aldushin, A.P., Merzhanov A.G., and Khaikin, B.I., On Certain Specificities of Condensed System Combustion with Refractory Reaction Products, Rep. Acad. Sci. USSR, vol. 204, no. 5, pp. 1139-1142, 1972b (in Russian).

  3. Alexandrov, V.V. and Korchagin, M.A., Mechanism and Macrokinetics of Interaction of Components in Powder Mixtures, Rep. Acad. Sci., vol. 292, no. 4, pp. 879-881, 1987 (in Russian).

  4. Bakinovskii, A., Knyazeva, A.G., Krinitcyn, M.G., Kryukova, O.N., Pobol., I.L., Fedorov, V.V., and Rajczyk, J., Electron Beam Assisted Deposition of Ni-Al Coating on to Steel Substrate, Int. J. Self-Propag. High-Temp. Synth., vol. 28, no. 4, pp. 245-255, 2019. DOI: 10.3103/S1061386219040034.

  5. Biswas, A. and Roy, S.K., Comparison between the Microstructural Evolutions of Two Modes of SHS of NiAl: Key to a Common Reaction Mechanism, Acta Materialia, vol. 52, no. 2, pp. 257-270, 2004. DOI: 10.1016/j.actamat.2003.08.018.

  6. Biswas, A., Roy, S.K., Gurumurthy, K.R., Prabhu, N., and Banerjee, S., A Study of Self-Propagating High-Temperature Synthesis of NiAl in Thermal Explosion Mode, Acta Materialia, vol. 50, no. 4, pp. 757-773, 2002. DOI: 10.1016/S1359-6454(01)00387-1.

  7. Bochenek, K. and Basista, M., Advances in Processing of NiAl Intermetallic Alloys and Composites for High Temperature Aerospace Applications, Prog. Aerospace Sci., vol. 79, pp. 136-146, 2015. DOI: https://doi.org/10.1016/j.paerosci.2015.09.003.

  8. Bukrina, N.V., Knyazeva, A.G., and Ovcharenko, V.E., Mathematical Model of High-Temperature Synthesis of Ni3Al Intermetallic in Thermal Explosion of a Powder Compact from Stoichiometric Initial Composition, Interdisciplinary Problems of Additive Technologies 2018, Proc. III Pan-Russian Scientific Seminar with International Participation, Tomsk, Russia, pp. 3-9, 2018 (in Russian), accessed February 06, 2020, from http://portal.tpu.ru:7777/science/seminar/at/IPAT-2017_0.pdf.

  9. Clevenger, L.A., Thompson, C.V., and Tu, K.N., Explosive Silicidation in Nickel/Amorphous Silicon Multilayer Thin Films, J. Appl. Phys, vol. 67, no. 6, pp. 2894-2898, 1990. DOI: 10.1063/1.345429.

  10. Curfs, C., Turrillas, X., Vaughan, G.B.M., Terry, A.E., Kvick, A., and Rodriquez, M.A., Al-Ni Intermetallics Obtained by SHS; A Time-Resolved X-Ray Diffraction Study, Intermetallics, vol. 15, no. 9, pp. 1163-1171, 2007. DOI: 10.1016 / j.intermet.2007.02.00.

  11. Dyer, T.S. and Munir, Z.A., The Synthesis of Nickel Aluminides by Multilayer Self-Propagating Com-bustion, Metallurg. Mater. Trans. B, vol. 26, no. 3, pp. 603-610, 1995. DOI: 10.1007/BF02653881.

  12. Filimonov, V.Yu. and Koshelev, K.B., Adiabatic Thermal Explosion in Disperse Condensed Systems with Limited Solubility of the Reactants in the Product Layer, combust. Explos. Shock Waves, vol. 49, no. 4, pp. 463-471, 2013. DOI: https://doi.org/10.1134/S0010508213040096.

  13. Filimonov, V.Yu., Koshelev, K.B., and Sytnikov, A.A., Thermal Modes of Heterogeneous Exothermic Reactions. Solid-Phase Interaction, Combust. Flame, vol. 185, pp. 93-104, 2017. DOI: 10.1016/j. combustflame.2017.06.020.

  14. Gostishchev, V.V., Astapov, I.A., Seredyuk, A.V., Khimukhin, S.N., and Hosen, R., High-Temperature Synthesis of Composites Based on Nickel Aluminides, Inorg. Mater., vol. 52, no. 4, pp. 419-422, 2016. DOI: 10.1134/S0020168516040051.

  15. Grapes, M.D., Santala, M.K., Campbell, G.H., LaVan, D.A., and Weihs, T.P., A Detailed Study of the Al3Ni Formation Reaction Using Nanocalorimetry, Thermochimica Acta, vol. 658, pp. 72-83, 2017. DOI: https://doi.org/10.1016/j.tca.2017.10.018.

  16. Grigoriev, I.S. and Meilikhov, E.Z., Eds., Physical Quantities: Reference Book, Moscow, Russia: Energoatomizdat Press, 1991 (in Russian).

  17. Khudyaev, S.I., Effect of the Phase Transition on the Ignition Process, Combust. Explos. Shock Waves, vol. 39, no. 6, pp. 644-649, 2003. DOI: 10.1023/B: CESW. 0000007676.33964.03.

  18. Knyazeva, A. and Kryukova, O., Simulation of the Synthesis of Multiphase Composites on a Substrate, Taking into Account the Staging of Chemical Reactions, Appl. Solid State Chem., vol. 1, pp. 32-44, 2019. DOI: 10.18572/2619-0141-2018-2-3-2-16.

  19. Koshelev, K.B., Investigating the Processes of Structure Formation and Self-Heating in a Binary Ti-Al Powder Mixture in a Static Thermal Explosion Regime Based on a State Diagram, Bull. Tomsk Polytech. Univ., vol. 312, no. 2, pp. 44-47, 2008 (in Russian).

  20. Kovalev, O.B. and Neronov, V.A., Metallochemical Analysis of the Reaction in a Mixture of Nickel and Aluminum Powders, Combust. Explos. Shock Waves, vol. 40, no. 2, pp. 172-179, 2004. DOI: https:// doi.org/10.1023/B:CESW.0000020139.07061.9e.

  21. Kubaski, E.T., Cintho, O.M., Capocchi, J.D.T., Effect of Milling Variables on the Synthesis of NiAl Intermetallic Compound by Mechanical Alloying, Powder Technol., vol. 214, no. 1, pp. 77-82, 2011. DOI: 10.1016/j.powtec.2011.07.038.

  22. Lapshin, O.V. and Ovcharenko, V.E., Mathematical Model of High-Temperature Synthesis of Nickel Aluminide Ni3Al by Thermal Shock of a Powder Mixture of Pure Elements, Combust. Explos. Shock Waves, vol. 32, no. 3, pp. 299-305, 1996. DOI: https://doi.org/10.1007/BF01998460.

  23. Lapshin, O.V. and Smolyakov, V.K., Simulation of Thermal Explosion in a Pre-Activated 3Ni+Al Mixture, Combust. Explos. Shock Waves, vol. 53, no. 5, pp. 548-553, 2017. DOI: https://doi.org/10.1134/ S0010508217050070.

  24. Lapshin, O.V. and Smolyakov, V.K., Thermal Explosion in a Gasless System Undergoing a Phase Transition, Chem. Phys., vol. 34, no. 3, pp. 62-68, 2015 (in Russian).

  25. Lee, S.-H., Lee, J.-H., Lee, Y.-H., Dong Hyuk Shin, D.H., and Kim, Y.S., Effect of Heating Rate on the Combustion Synthesis of Intermetallics, Mater. Sci. Eng. A, vol. 281, nos. 1-2, pp. 275-285, 2000. DOI: 10.1016/S0921-5093(99)00715-7.

  26. Maznoy, A., Kirdyashkin, A., Kitler, V., and Solovyev, A., Combustion Synthesis and Characterization of Porous Ni-Al Materials for Metal-Supported Solid Oxide Fuel Cells Application, J. Alloys Compd., vol. 697, pp. 114-123, 2017. DOI: https://doi.org/10.1016/j.jallcom.2016.11.350.

  27. Merzhanov, A.G. and Strunina, A.G., Laws of Thermal Explosion with Constant Heating Rate, Combust. Explos. Shock Waves, vol. 1, no. 1, pp. 43-52, 1965. DOI: https://doi.org/10.1007/BF00757151.

  28. Merzhanov, A.G., Theory of Gasless Combustion, Chernogolovka, Russia, 1973 (in Russian).

  29. Mitra, R., Ed., Intermetallic Matrix Composites. Properties and Applications, Sawston, UK: Woodhead Publishing, 2017.

  30. Morsi, K., Reaction Synthesis Processing of Ni-Al Intermetallic Materials, Mater. Sci. Eng. A, vol. 299, pp. 1-15, 2001.

  31. Ovcharenko, V.E., Boyangin, E.N., Pshenichnikov, A.P., and Krilova, T.A., Structural-Phase State and Strength Properties of Pressure-Synthesized Ni3Al Intermetallic Compound, Mater. Sci. Forum. Mater. Process. Technol., vol. 906, pp. 95-100, 2017. DOI: doi.org/10.4028/www.scientific.net/ MSF.906.95.

  32. Paskonov, V.M., Polezhaev, V.I., and Chudov, L.A., Numerical Modeling of Heat and Mass Transfer Processes, Moscow, Russia: Nauka Press, 1984 (in Russian).

  33. Qin, L., Hu, J., Cui, C., Wang, H., and Guo, Z., Effect of Al Content on Reaction Laser Sintering of Ni-Al Powder, Sci. Sintering, vol. 40, no. 3, pp. 295-301, 2008. DOI: 10.2298/SOS0803295Q.

  34. Rabinovich, O.S., Grinchuk, P.S., Andreev, M.A., and Khina, B.B., Conditions for Combustion Synthesis in Nanosized Ni/Al Films on a Substrate, Physica B, vol. 392, pp. 272-280, 2007. DOI: https://doi.org/10.1016/j.physb.2006.11.032.

  35. Rogachev, A.S., Shkodich, N.F., Vadchenko, S.G., Baras, F., Kovalev, D.Yu., Rouvimov, S., Nepapushev, A.A., and Mukasyan, A.S., Influence of the High Energy Ball Milling on Structure and Reactivity of the Ni + Al Powder Mixture, J. Alloys Compd., vol. 577, pp. 600-605, 2013. DOI: https://doi. org/10.1016/j.jallcom.2013.06.114.

  36. Rogachev, A.S., Vadchenko, S.G., Baras, F., Politano, O., Rouvimov, S., Sachkova, N.V., Grapes, M.D., Weihs, T.P., and Mukasyan, A.S., Combustion in Reactive Multilayer Ni/Al Nanofoils: Experiments and Molecular Dynamic Simulation, Combust. Flame, vol. 166, pp. 158-169, 2016. DOI: https://doi. org/10.1016/j.combustflame.2016.01.014.

  37. Rosa, R., Veronesi, P., Poli, G., Leonelli, C., Corradi, A.B., Casagrande, A., and Boromei, I., Ni-Al-Ti Coatings Obtained by Microwave Assisted Combustion Synthesis, Surface Eng., vol. 28, pp. 91-95, 2012. DOI: https://doi.org/10.1179/1743294411Y.0000000046.

  38. Rutkowski, P., Huebner, J., Kata, D., Lis, J., Grabos, A., and Chlubny, L., Laser Initiated Ti3SiC2 Powder and Coating Synthesis, Ceramics Int., vol. 44, no. 9, pp. 10883-10890, 2018. DOI: https://doi. org/10.1016/j.ceramint.2018.03.143.

  39. Smolyakov, V.K. and Lapshin, O.V., Thermal Explosion in Mechanically Activated Heterogeneous Systems, Combust. Explos. Shock Waves, vol. 47, no. 3, pp. 314-322, 2011. DOI: https://doi.org/10.1134/ S0010508211030087.

  40. Thiers, L., Mukasyan, A.S., and Varma, A., Thermal Explosion in Ni-Al System: Influence of Reaction Medium Microstructure, Combust. Flame, vol. 131, nos. 1-2, pp. 198-209, 2002. DOI: 10.1016/ S0010-2180(02)00402-9.

  41. Volyanski, I., Shishkovsky, I.V., Yadroitsev, I., Shcherbakov, V.I., and Morozov, Yu.G., Layer-by-Layer Laser Synthesis of Cu-Al-Ni Intermetallic Compounds and Shape Memory Effect, Inorg. Mater., vol. 52, no. 6, pp. 566-572, 2016. DOI: 10.1134/S0020168516060170.

  42. Xanthopoulou, G., Marinou, A., Vekinis, G., Lekatou, A., and Vardavoulias, M., Ni-Al and NiO-Al Composite Coatings by Combustion-Assisted Flame Spraying, Coatings, vol. 4, pp. 231-252, 2014. DOI: 10.3390/coatings4020231.

  43. Yang, Y.F., Mu, D.K., and Jiang, Q.C., A Simple Route to Fabricate TiC-TiB2/Ni Composite via Thermal Explosion Reaction Assisted with External Pressure in Air, Mater. Chem. Phys., vol. 143, no. 2, pp. 480-485, 2014. DOI: 10.1016/j.matchemphys.2013.10.003.


Articles with similar content:

Oscillations in Optimal-High-Speed Radioautomatics Systems
Telecommunications and Radio Engineering, Vol.60, 2003, issue 3&4
B. Ya. Kostik, V. I. Borsch, V. V. Koval
EFFECT OF TENSION, COMPRESSION, AND SHEAR ON THE FORMATION OF A COMPOSITE OF Ni3AI WITH REFRACTORY INERT INCLUSIONS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.11, 2020, issue 1
Yurii A. Chumakov, Anna G. Knyazeva
General Analysis of Isobaric Diffusion in Composite Ceramic Membranes with Inclusion of Axial Dispersion Coefficient
Journal of Porous Media, Vol.12, 2009, issue 10
Evangelos Tsotsas, A. Seidel-Morgenstern, A. Hussain
Precision Control System of Chemical Reactor of Continuous Operation
Journal of Automation and Information Sciences, Vol.51, 2019, issue 4
Elena O. Ulitskaya , Oleksii A. Stopakevich
HEAT EXPLOSION IN FISCHER−TROPSCH CATALYTIC GRANULE WITH LOCALIZED COBALT MICROPARTICLES
International Heat Transfer Conference 16, Vol.5, 2018, issue
I. Solomonik, A. Fokina, V. Ermolaev, Igor V. Derevich, V. Mordkovich