ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
ESCI SJR: 0.176 SNIP: 0.48 CiteScore™: 1.3

ISSN 印刷: 1093-3611
ISSN オンライン: 1940-4360

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.2019031690
pages 239-253

EFFECT OF WELDING HEAT INPUT ON HEAT-AFFECTED ZONE SOFTENING IN QUENCHED AND TEMPERED ARMOR STEELS

Oleksiy Slyvinskyy
National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, 6/2 Dashavska Str., Kyiv, 03056, Ukraine
Yevheniia Chvertko
National Technical University of Ukraine, Igor Sikorsky Kyiv Polytechnic Institute, 6/2 Dashavska Str., Kyiv, 03056, Ukraine
Serhii Bisyk
Central Research Institute of Weapons and Military Equipment of the Armed Forces of Ukraine

要約

The paper presents the results of a bead-on-plate test for comparison of microhardness and micro-structure of the heat-affected zone of Miilux Protection 500 (MP 500), Swebor Armor 500 (SA 500), and ATI 500+ quenched and tempered protection steels and alloy armor steel (AAS). Gas metal arc welding (GMAW) with heat-input values varied from 0.50 kJ·mm-1 to 0.90 kJ·mm-1. The microhardness profiles in the heat-affected zones of the investigated materials have shown that the most significant loss of strength was detected in the ATI 500+ steel. Even when bead was deposited with the lowest welding heat input (0.5 kJ·mm-1), the length of the softened heat-affected zone region of the ATI 500+ steel is 1.6−2.0 times larger than that of other materials. Alloy armor steel was found to be less sensitive to welding heating and most resistant to heat-affected zone softening in comparison with other protection steels. The results obtained are explained by studies of microstructure of softened heat-affected zone regions and by comparison of the chemical composition of steels. A significantly higher content of Si, Cr, Ni, and Mo as well as additional alloying with V in the steel has led to suppression of the processes of softening of heat-affected zone regions which are heated to the temperature values of high tempering and partial austenization. The results obtained show the need of improving the GMAW technologies used in production of hulls and towers of armored fighting vehicles.

参考

  1. Adamczyk, J., Development of the Microalloyed Constructional Steels, JAMME, vol. 14, nos. 1-2, pp. 9-20, 2006.

  2. Ahiale, G.K. and Oh, Y.-J., Microstructure and Fatigue Performance of Butt-Welded Joints in Advanced High-Strength Steels, Mater. Sci. Eng. A, vol. 597, pp. 342-348, 2014. DOI: 10.1016/j. msea.2014.01.007.

  3. Baker, T.N., Processes, Microstructure and Properties of Vanadium Microalloyed Steels, Mater. Sci. Technol., vol. 25, no. 9, pp. 1083-1107, 2009. DOI: 10.1179/174328409X453253.

  4. Crouch, I.G., Cimpoeru, S.J., Li, H., and Shanmugam, D., Armor Steels, in The Science of Armor Materials, I.G. Crouch, Ed., Sawston, UK: Woodhead Publishing, pp. 55-115, 2017.

  5. Crouch, I.G., Metallic Armor-From Cast Aluminum Alloys to High Strength Steels, Material Forums, vol. 12, pp. 31-37, 1988.

  6. Grange, R.A., Hribal, C.R., and Porter, L.F., Hardness of Tempered Martensite in Carbon and Low-Alloy Steels, Metallurg. Trans. A, vol. 8, no. 1, pp. 1775-1785, 1977. DOI: 10.1007/BF02646882.

  7. Hanhold, B., Babu, S.S., and Cola, G., Investigation of Heat-Affected Zone Softening in Armor Steels. Part 1-Phase Transformation Kinetics, Sci. Technol. Weld. Join., vol. 18, no. 3, pp. 247-252, 2013. DOI: 10.1179/1362171812Y.0000000100.

  8. Janicki, D., Disk Laser Welding of Armor Steel, Arch. Metallurg. Mater., vol. 59, no. 4, pp. 1641-1646, 2014. DOI: 10.2478/amm-2014-0279.

  9. Kim, B., Celada, C., San Martin, D., Sourmail, T., and Rivera-Diaz-del-Castilloa, P.E.J., The Effect of Silicon on the Nanoprecipitation of Cementite, Acta Materialia, vol. 61, no. 18, pp. 6983-6992, 2013. DOI: 10.1016/j.actamat.2013.08.012.

  10. Krauss, G., Heat-Treated Low-Alloy Carbon Steels: The Benefits of Molybdenum, Proc. of Int. Seminar on Applications of Mo in Steels, Beijing, China, pp. 14-25, 2010.

  11. Lin, H.R. and Cheng, G.H., Hardenability Effect of Boron on Carbon Steels, Mater. Sci. Technol., vol. 3, no. 10, pp. 855-859, 1987. DOI: 10.1179/mst.1987.3.10.855.

  12. Liptak, P., Barenyi, I., and Hires, O., Degradation of Mechanical Properties after Welding of High Strength Steel Armox 500, Sci. Military, vol. 2, pp. 33-37, 2012.

  13. Llewellyn, D.T. and Cook, W.T., Metallurgy of Boron-Treated Low-Alloy Steels, Metals Technol., vol. 1, no. 1, pp. 517-529, 1974. DOI: 10.1179/030716974803287924.

  14. Manganello, S.J. and Abbott, K.H., Metallurgical Factors Affecting the Ballistic Behavior of Steel Targets, J. Materials, vol. 7, no. 2, pp. 231-239, 1972.

  15. Maweja, K. and Stumpf, W., The Design of Advanced Performance High Strength Low-Carbon Martensitic Armor Steels. Part 1. Mechanical Property Considerations, Mater. Sci. Eng. A, vol. 485, nos. 1-2, pp. 140-153, 2008a. DOI: 10.1016/j.msea.2007.08.048.

  16. Maweja, K. and Stumpf, W., The Design of Advanced Performance High Strength Low-Carbon Martensitic Armor Steels: Microstructural Considerations, Mater. Sci. Eng. A, vol. 480, nos. 1-2, pp. 160-166, 2008b. DOI: 10.1016/j.msea.2007.07.078.

  17. Miilux, Ltd., Miilux Protection Workshop Recommendations, accessed from https://www.miilux.fi/armouring-solutions/?lang=en/, 2019.

  18. Mohandas, T., Reddy, G.M., and Kumar, B.S., Heat-Affected Zone Softening in High-Strength Low-Alloy Steels, J. Mater. Process Technol, vol. 88, nos. 1-3, pp. 284-294, 1999. DOI: 10.1016/S0924-0136(98)00404-X.

  19. Pang, W., Ahmed, N., and Dunne, D., Hardness and Microstructural Gradients in the Heat-Affected Zone of Welded Low-Carbon Quenched and Tempered Steels, Australasian Welding J., vol. 56, no. 2, pp. 36-48, 2011.

  20. Papetti, D.J., Metallic Armor Materials, in Ballistic Materials and Penetration Mechanics, R.C. Laible, Ed., Amsterdam: Elsevier, pp. 145-167, 1980.

  21. Porter, D.A., Weldable High-Strength Steels: Challenges and Engineering Applications, High-Strength Materials-Challenges and Applications, Proc. of IIW Int. Conf., Helsinki, Finland, pp. 1-14, 2015.

  22. Reddy, G.M. and Mohandas, T., Ballistic Performance of High-Strengh Low-Alloy Steel Weldments, J. Mater. Process Technol, vol. 57, nos. 1-2, pp. 23-30, 1996. DOI: 10.1016/0924-0136(95)02041-1.

  23. Reddy, G.M., Mohandas, T., and Papukutty, K.K., Effect of Welding Process on the Ballistic Performance of High-Strength Low-Alloy Steel Weldments, J. Mater. Process Technol., vol. 74, nos. 1-3, pp. 27-35, 1998. DOI: 10.1016/S0924-0136(97)00245-8.

  24. Robledo, D.M., Gomez, J.A.S., and Barrada, J.E.G., Development of a Welding Procedure for MIL A 46100 Armor Steel Joints Using Gas Metal Arc Welding, DYNA, vol. 78, no. 168, pp. 65-71, 2011.

  25. Ryan, S., Li, H.-J., Edgerton, M., Gallardy, D., and Cimpoeru, S.J., Ballistic Evaluation of an Australian Ultra-High Hardness Steel, BALLISTICS 2016, Proc. of 29th Int. Symp. on Ballistics, C. Woodley and I. Cullis, Eds., pp. 1773-1778, 2016.

  26. Showalter, D.D., Gooch, W.A., Burkins, M.S., and Stockman Koch, R., Ballistic Testing of SSAB Ultra-High Hardness Steel for Armor Applications, from Proc. of 24th Int. Ballistics Symp., New Orleans, LA, pp. 634-642, 2008.

  27. SSAB, Inc., Workshop Recommendations for Armox, accessed from https://www.ssab.com/support/processing/, 2019.

  28. Unfried, J.S., Garzon, C.M., and Giraldo, J.E., Numerical and Experimental Analysis of Microstructure Evolution during Arc Welding in Armor Plate Steels, J. Mater. Process Technol., vol. 209, no. 4, pp. 1688-1700, 2009. DOI: 10.1016/j.jmatprotec.2008.04.025.

  29. Wells, M.G.H., Weiss, R.K., Montgomery, J.S., and Melvin, T.G., LAV Armor Plate Study, U.S. Army Materials Technology Laboratory, Watertown, MA, Tech. Rep. MTL TR 92-26, April, 1992.

  30. Zhang, L. and Kannengiesser, T., HAZ Softening in Nb-, Ti-, and Ti+ V-Bearing Quenched and Tempered Steel Welds, Weld. World, vol. 60, pp. 177-184, 2016. DOI: 10.1007/s40194-016-0299-7.


Articles with similar content:

SYNTHESIS OF OXIDE-CERAMIC COATINGS ON MAGNESIUM ALLOYS AND THEIR CORROSION PROPERTIES
Progress in Plasma Processing of Materials, 2003, Vol.0, 2003, issue
W. Dietzel, H. M. Nykyforchyn, M. D. Klapkiv
FORMATION OF MICROSTRUCTURES AND OXIDES ON STRUCTURAL STEEL BY NANOSECOND LASER IRRADIATION
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.18, 2014, issue 3
C. Lupulescu, A. N. Chumakov, M. Mitric, B. Gakovic, Irina S. Nikonchuk, Suzana Petrovic
SOME ASPECTS OF ALLOYING AND REFINING OF HIGH NITROGEN STEELS IN A PLASMA FURNACE UNDER ELEVATED PRESSURE
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.3, 1999, issue 1
Jerzy Siwka, Jan Jowsa , Wlodzimierz Derda
EFFECT OF BICARBONATE AND CHLORIDE ELECTROLYTES ON PRODUCT DISTRIBUTION FOR CO2 ELECTROCHEMICAL REDUCTION ON Cu ELECTRODE
Catalysis in Green Chemistry and Engineering, Vol.1, 2018, issue 2
Balasubramanian Viswanathan, Raghuram Chetty, Gopalram Keerthiga
Functional Role of Fucoxantine and Brown Algae Phytohormones
International Journal on Algae, Vol.17, 2015, issue 1
E. V. Popova, M. V. Nechoroshev, V. I. Ryabushko, L.V. Voytenko, L. I. Musatenko