ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
SJR: 0.137 SNIP: 0.341 CiteScore™: 0.43

ISSN 印刷: 1093-3611
ISSN オンライン: 1940-4360

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.v8.i2.100
pages 253-272

INVESTIGATION OF PHENOMENA INFLUENCING PROPERTIES OF PLASMA SPRAYED CERAMIC-METAL COMPOSITE DEPOSITS

A. A. Syed
SPCTS, Universite de Limoges, Faculte des Sciences, Limoges, France
Alain Denoirjean
Equipe Plasma Laser Matériaux, ESA CNRS 6015, 87060 Limoges Cedex, France
P. Denoirjean
SPCTS, Universite de Limoges, Faculte des Sciences,123 ave. A. Thomas, 87060, Limoges, France
J. C. Labbe
Faculte des Sciences et Techniques, L.M.C.T.S. - C.N.R.S. E.S.A. 6015 Universite de Limoges -123, av. Albert Thomas - 87065 LIMOGES Cedex, France
Pierre Fauchais
Laboratoire Sciences des Procedes Ceramiques et de Traitements de Surface UMR CNRS 6638 University of Limoges 123 avenue Albert Thomas, 87060 LIMOGES - France

要約

The phenomena influencing the properties of plasma sprayed ceramic-metal composite (cermet) deposits were examined. For that purpose, cermet deposits were developed by co-spraying alumina and austenitic stainless steel powders and were compared with those fabricated by spraying these powders individually. A set of particle injection and plasma spray parameters were determined by optimizing deposition efficiency of sprayed powders. The properties of the fabricated composite deposits were only partially dependent on the inherent properties of the parent materials and other factors had more dominating influence. Beside other factors, in-flight metallic particle oxidation and ceramic-metal wetting behavior were found to be the major phenomena controlling deposit properties. The in-flight particle oxidation, contributing up to 43% of the total oxide in metallic deposits, resulted in higher hardness and elastic modulus values of stainless steel deposits. The formed oxide could assist in improving the wetting behavior of stainless steel-alumina system, studied by sessile drop method. In non-wetting conditions, extensively fragmented stainless steel splats were collected on predeposited alumina causing poor interlamellar contacts and inferior deposit integrity and mechanical properties.


Articles with similar content:

ASSESSMENT OF THE STRUCTURE AND THE PROPERTIES OF THE MN-CR-NI LAYER COATING THE HADFIELD STEEL
Progress in Plasma Processing of Materials, 2003, Vol.0, 2003, issue
G. A. Zhelobtsova, G. A. Filippov, M. V. Illichev, Oleg A. Sinkevich, E. Kh. Isakaev
IMPACT OF MECHANICAL ACTIVATION AND MODIFICATION OF INITIAL POWDER WITH REFRACTORY NANOPARTICLES ON THE PROPERTIES OF PLASMA-SPRAYED COATINGS
Progress in Plasma Processing of Materials, 2003, Vol.0, 2003, issue
Z.A. Korotaeva, A.E. Lapin, V.A. Poluboyarov, O. P. Solonenko, V.I. Kuz'min, A.N. Cherepanov
SUPERIOR MATERIAL PROPERTIES OF HYBRID FILLER-REINFORCED ALUMINUM MMC THROUGH DOUBLE-LAYER FEEDING TECHNIQUE ADOPTED IN BOTTOM TAPPING STIR CASTING
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.22, 2018, issue 4
Elango Natarajan, Rathinasabapathy Sasikumar, S. Prakash
AGGLOMERATION AND IGNITION OF ALUMINUM PARTICLES COATED BY NICKEL
International Journal of Energetic Materials and Chemical Propulsion, Vol.6, 2007, issue 2
Alon Gany, Valery Rosenband
OXIDATION AND SPLATS OF STAINLESS STEEL PARTICLES COATED WITH AN ALUMINA SHELL
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.14, 2010, issue 4
Helene Ageorges, Pierre Fauchais