ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Plasma Medicine
SJR: 0.278 SNIP: 0.183 CiteScore™: 0.57

ISSN 印刷: 1947-5764
ISSN オンライン: 1947-5772

Plasma Medicine

DOI: 10.1615/PlasmaMed.2014008540
pages 125-136

Nonthermal Plasma Increases Expression of Wound Healing Related Genes in a Keratinocyte Cell Line

Annemarie Barton
Centre for Innovation Competence plasmatis, Greifswald, Germany; Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
Kristian Wende
Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Greifswald, Germany
Lena Bundscherer
Center for Innovation Competence plasmatis, Greifswald, Germany; Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
Sybille Hasse
Center for Innovation Competence plasmatis, Greifswald, Germany; Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
Anke Schmidt
Centre for Innovation Competence plasmatis, Greifswald, Germany; Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
Sander Bekeschus
Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Greifswald, Germany
Klaus-Dieter Weltmann
Leibniz-Institute for Plasma Science and Technology (INP Greifswald), ZIK Plasmatis, Greifswald, Germany
Ulrike Lindequist
Institute of Pharmacy, Ernst-Moritz-Arndt-University Greifswald F.-L.-Jahn-Str. 17, D-17489 Greifswald, Germany
Kai Masur
Center for Innovation Competence plasmatis, Greifswald, Germany; Leibniz Institute for Plasma Science and Technology, Greifswald, Germany

要約

The application of physical plasma in medicine has great potential in wound healing. Due to the generation of reactive oxygen and nitrogen species (ROS, RNS), emission of UV radiation and the generated electric fields can be used to stimulate epithelial and immune cells. To understand the processes on a molecular level the human keratinocyte cell line HaCaT was treated with a nonthermal atmospheric pressure argon plasma jet (kinpen). Subsequently, cellular RNA was isolated to conduct a quantitative polymerase chain reaction (qPCR) to monitor the magnitude of translation of genes related to wound healing. Plasma treatment induced an upregulation of vascular endothelial growth factor-a (VEGF-A), heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), granulocyte macrophage colony-stimulating factor (GM-CSF), prostaglandin-endoperoxide synthase 2 (PTGS2) and interleukin-6 (IL-6) at the mRNA levels. This is a very promising result as the corresponding proteins are likely to be secreted and promote the wound healing process. Therefore plasma potentially induces the secretion of certain cytokines and growth factors, and hence, it could be the stimulus which is necessary to induce chronic wounds to heal.