ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Plasma Medicine
SJR: 0.271 SNIP: 0.316 CiteScore™: 1.9

ISSN 印刷: 1947-5764
ISSN オンライン: 1947-5772

Plasma Medicine

DOI: 10.1615/PlasmaMed.2020034526
pages 71-90

Optical and Electrical Characteristics of an Endoscopic DBD Plasma Jet

Orianne Bastin
Bio-, Electro-, and Mechanical Systems (BEAMS), Biomed Group, Ecole Polytechnique de Bruxelles, Brussels, Belgium
Max Thulliez
Bio-, Electro-, and Mechanical Systems (BEAMS), Biomed Group, Ecole Polytechnique de Bruxelles, Brussels, Belgium
Jean Servais
Bio-, Electro-, and Mechanical Systems (BEAMS), Biomed Group, Ecole Polytechnique de Bruxelles, Brussels, Belgium
Antoine Nonclercq
Bio-, Electro-, and Mechanical Systems (BEAMS), Biomed Group, Ecole Polytechnique de Bruxelles, Brussels, Belgium
Alain Delchambre
Bio-, Electro-, and Mechanical Systems (BEAMS), Biomed Group, Ecole Polytechnique de Bruxelles, Brussels, Belgium
Alia Hadefi
Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, C.U.B. Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
Jacques Devière
Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, C.U.B. Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
François Reniers
Chemistry of Surfaces, Interfaces, and Nanomaterials, ChemSIN, Université Libre de Bruxelles, Faculty of Sciences, Brussels, Belgium


In this work, a new cold plasma source design capable of generating and transporting a plasma jet over long distances (2 m) is presented with the purpose of being used in flexible endoscopy for treatment within the gastrointestinal tract. This dielectric barrier discharge helium plasma jet consists of a polytetrafluoroethylene capillary connected to a quartz chamber around which a copper electrode is wrapped. A copper wire is freely inserted inside the capillary. The applied voltage is a conventional AC 18-kHz signal to drive the discharge. In order to develop a safe and predictable treatment, a robust and reliable electrical model is necessary and we hypothesized that plasma transport can be modeled as a transmission line. We therefore assessed the electrical behavior of our new cold plasma source. As it is known that the target to which the plasma jet is applied drastically changes the behavior of the plasma itself, an electrical substitute simulating the impedance of a human body is introduced into the circuit, and the plasma behavior is then compared to the free-jet configuration. The effects of the input power (from 10 W to 80 W), and the length of the jet (from 60 cm to 220 cm) were investigated, as well as the electrical changes induced by the presence of an endoscope. The results obtained show trend curves similar to our hypothetical model, although the latter is still only qualitative. This long plasma jet model represents a promising approach that can be used, after further refinement, for controllability of plasma jets for endoscopy applications.


  1. Vasilets VN, Gutsol A, Shekhter AB, Fridman A. Plasma medicine. High Energy Chem. 2009;43(3):229-33.

  2. Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A. Applied plasma medicine. Plasma Process Polym. 2008;5(6):503-33.

  3. Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, Van Dijk J, Zimmerman JL. Plasma medicine: An introductory review. New J Phys. 2009;11:115012.

  4. Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. Br J Cancer. 2011;105(9):1295-301.

  5. Kalghatgi SU, Fridman G, Fridman A, Friedman G, Clyne AM. Non-thermal dielectric barrier discharge plasma treatment of endothelial cells. In: 2008 30th annual international conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, 2008; p. 3578-81.

  6. Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys. 2012;45:263001.

  7. Yan D, Sherman JH, Keidar M. Cold atmospheric plasma, a novel promising anti-cancer treatment modality. Oncotarget. 2017;8(9):15977-95.

  8. Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, Heinlin J, Karrer S, Landthaler M, Shimizu T, Steffes B, Bunk W, Monetti R, Zimmerman JL, Pompl R, Stolz W. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163(1):78-82.

  9. Kurosawa M, Takamatsu T, Kawano H, Hayashi Y, Miyahara H, Ota S, Okino A, Yoshida M. Endoscopic hemostasis in porcine gastrointestinal tract using CO2 low-temperature plasma jet. J Surg Res. 2019;234:334-42.

  10. Foster KW, Moy RL, Fincher EF. Advances in plasma skin regeneration. J Cosmet Dermatol. 2008;7(3):169-79.

  11. Weltmann KD, Kindel E, Brandenburg R, Meyer C, Bussiahn R, Wilke C, von Woedtke T. Atmospheric pressure plasma jet for medical therapy: Plasma parameters and risk estimation. Contrib Plasma Phys. 2009;49(9):631-40.

  12. Helmke A, Gerling T, Weltmann KD. Plasma sources for biomedical applications. In: Metelmann HR, von Woedtke T, Weltmann KD, editors. Comprehensive clinical plasma medicine. Cham (Switzerland): Springer; 2018. p. 23-41.

  13. Vassiliou MC, Von Renteln D, Wiener DC, Gordon SR, Rothstein RI. Treatment of ultralong-segment Barrett's using focal and balloon-based radiofrequency ablation. Surg Endosc Other Interv Tech. 2010;24(4):786-91.

  14. Altonbary AY, Galal A, El-Nady M, Hakim H. Endoscopic ultrasound guided biliary drainage: A multicenter retrospective experience of a technique slowly gaining acceptance in Egypt. Ther Adv Gastrointest Endosc. 2019;12. doi: 10.1177/2631774519889456.

  15. Kitamura K, Yamamiya A, Ishii Y, Mitsui Y, Yoshida H. Endoscopic side-by-side uncovered self-expandable metal stent placement for malignant hilar biliary obstruction. Ther Adv Gastrointest Endosc. 2019;12. doi: 10.1177/2631774519846345.

  16. Cherrington AD, Rajagopalan H, Maggs D, Deviere J. Hydrothermal duodenal mucosal resurfacing role in the treatment of metabolic disease. Gastrointest Endosc Clin N Am. 2017;27(2):299-311.

  17. Everett SM. Endoscopic management of refractory benign oesophageal strictures. Ther Adv Gastrointest Endosc. 2019;12. doi: 10.1177/2631774519862134.

  18. Robert E, Vandamme M, Brulle L, Lerondel S, Le Pape A, Sarron V, Ries D, Darny T, Dozias S, Collet G, Kieda C, Pouvesle JM. Perspectives of endoscopic plasma applications. Clin Plasma Med. 2013;1(2):8-16.

  19. Winter J, Nishime TMC, Bansemer R, Balazinski M, Wende K, Weltmann KD. Enhanced atmospheric pressure plasma jet setup for endoscopic applications. J Phys D Appl Phys. 2019;52(2):024005.

  20. Konstantin KG, Machida M, Prysiazhnyi V, Honda RY. Transfer of a cold atmospheric pressure plasma jet through a long flexible plastic tube. Plasma Sources Sci Technol. 2015;24:025038.

  21. Darny T, Pouvesle J, Puech V, Douat C, Dozias S, Robert E. Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements. Plasma Sources Sci Technol. 2017;26:045008.

  22. Jogi I, Talviste R, Raud J, Piip K, Paris P. The influence of the tube diameter on the properties of an atmospheric pressure He micro-plasma jet. J Phys D Appl Phys. 2014;47;415202.

  23. Cho G, Lim H, Kim JH, Jin DJ, Kwon GC, Choi EH, Uhm HS. Cold plasma jets made of a syringe needle covered with a glass tube. IEEE Trans Plasma Sci. 2011;39(5):1234-8.

  24. Robert E, Barbosa E, Dozias S, Vandamme M, Cachoncinlle C, Viladrosa R, Pouvesle JM. Experimental study of a compact nanosecond plasma gun. Plasma Process Polym. 2009;6(12):795-802.

  25. Robert E, Sarron V, Ries D, Dozias S, Vandamme M, Pouvesle JM. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun. Plasma Sources Sci Technol. 2012;21:034017.

  26. Winter J, Nishime TMC, Glitsch S, Luhder H, Weltmann KD. On the development of a deployable cold plasma endoscope. Contrib Plasma Phys. 2018;58(5):404-14.

  27. Polak M, Winter J, Schnabel U, Ehlbeck J, Weltmann KD. Innovative plasma generation in flexible biopsy channels for inner-tube decontamination and medical applications. Plasma Process Polym. 2012;9(1):67-76.

  28. Stancampiano A, Chung TH, Dozias S, Pouvesle JM, Mir LM, Robert E. Mimicking of human body electrical characteristic for easier translation of plasma biomedical studies to clinical applications. IEEE Trans Radiat Plasma Med Sci. 2019;4(3):335-42.

  29. Judee F, Dufour T. Plasma gun for medical applications: Engineering an equivalent electrical target of the human body and deciphering relevant electrical parameters. J Phys D Appl Phys. 2019;52:16LT02.

  30. Steer M. Modeling of transmission lines. In: Microwave and RF design: A systems approach. NC State University: Scitech Publishing; 2010. p. 178-94.

  31. American Relay League. Chapter 20: Transmission lines. In ARRL handbook of radio communications [Internet]. 2010; Available from: http://www.eas.uccs.edu/~mwickert/ece3110/lecture_notes/ N3110_2.pdf.

  32. Guru BS, Hiziroglu HR. Electromagnetic field theory fundamentals. 2nd ed. Cambridge: Cambridge University Press; 2009.

  33. Lucht P. Transmission lines and Maxwell's equations. Salt Lake City: Rimrock Digital Technology; 2014.

  34. Fowler B. Transmission line characteristics. Texas Instrum Note AN-108. 1986;(2):67-77.

  35. Hubert J, Dufour T, Vandencasteele N, Desbief S, Lazzaroni R, Reniers F. Etching processes of polytetrafluoroethylene surfaces exposed to He and He-O2 atmospheric post-discharges. Langmuir. 2012;28(25):9466-74.

  36. Yousfi M, Merbahi N, Sarrette JP, Eichwald O, Ricard A, Gardou JP, Ducasse O, Benhenni M. Nonthermal plasma sources of production of active species for biomedical uses: Analyses, optimization and prospects. In: Biomedical engineering: Frontiers and challenges. InTech; 2011. p 99-124.

  37. Walsh JL, Shi JJ, Kong MG. Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets. Appl Phys Lett. 2006;88(17):171501.

  38. Laroussi M, Akan T. Arc-free atmospheric pressure cold plasma jets: A review. Plasma Process Polym. 2007;4(9):777-88.

Articles with similar content:

Acute Rat Cutaneous Wound Healing for Small and Large Wounds Using Ar/O2 Atmospheric-Pressure Plasma Jet Treatment
Plasma Medicine, Vol.7, 2017, issue 3
Jong-Shinn Wu, Chen-Yon Tobias Tschang, Yu-Pin Cheng, Bi-Ren Gu, Zhi-Hua Lin, Kou-Chi Liao, Kuang-Yao Cheng, Nai-Lun Yeh, Hsien-Yi Chiu
Plasma Coagulation Controller: A Low- Power Atmospheric Plasma Source for Accelerated Blood Coagulation
Plasma Medicine, Vol.8, 2018, issue 3
L. Cordaro, S. De Rosa, Paola Brun, B. Zaniol, C. lndolfi, G. Marinaro, Gianluca De Masi, Roberto Cavazzana, C. Gareri, Matteo Zuin, A. Fassina, Emilio Martines
Cold Plasma Sterilization of Open Wounds: Live Rat Model
Plasma Medicine, Vol.1, 2011, issue 2
Gregory Fridman, Danil Dobrynin, Kimberly Wasko, Alexander A. Fridman, Gary Friedman
Characterization of Reactive Oxygen/ Nitrogen Species Produced in PBS and DMEM by Air DBD Plasma Treatments
Plasma Medicine, Vol.6, 2016, issue 1
Michael Schmidt, Pietro Favia, Eloisa Sardella, Pinalysa Cosma, Giorgio Dilecce, Vito Rizzi, Thomas von Woedtke, Ilaria Trizio, Roberto Gristina
Effect of Plasma-Activated Medium and Water on Replication and Extracellular Virions of Herpes Simplex Virus-1
Plasma Medicine, Vol.10, 2020, issue 1
Todor Bogdanov, Anton Hinkov, Daniel Todorov, Ivan Tsonev, Venelin Tsvetkov, Evgenia Benova, Kalina Shishkova, Stoyan Shishkov