ライブラリ登録: Guest
Multiphase Science and Technology

年間 4 号発行

ISSN 印刷: 0276-1459

ISSN オンライン: 1943-6181

SJR: 0.144 SNIP: 0.256 CiteScore™:: 1.1 H-Index: 24

Indexed in

EFFECT OF FLOW CONFINEMENT ON THE DRAG FORCE COEFFICIENT IN HOMOGENEOUS BUBBLY FLOW AT MODERATE VOLUME FRACTION

巻 32, 発行 3, 2020, pp. 181-202
DOI: 10.1615/MultScienTechn.2020031736
Get accessGet access

要約

This paper presents an investigation of the drag force coefficient modification in homogenous turbulent two-phase bubbly flows at moderate volume fractions (less than 10%). We focus on the analysis of the aptitude of the assumption of the confinement of the bubble surrounding flow at moderate volume fraction to explain the evolution of the drag force coefficient at this volume fraction range. A numerical study using computational fluid dynamics (CFD) was conducted to investigate the effect of the flow confinement on the drag force exerted on a fixed ellipsoidal bubble. An analytical model of the drag force correction function is equally proposed. The results obtained by both numerical and analytical approaches have been validated by comparing them with the experimental data from a previously published work that studied a uniform monodisperse swarm of bubbles, in which there was no significant effect of recirculating motion in the liquid phase. All of the results showed that the confinement of the surrounding bubble flow hypothesis can explain the drag force coefficient evolution at moderate void fractions. The results also suggest that the influence of the bubble's shape on the drag force coefficient is not important at this void fraction range. On the other hand, the analytical model seems to be in concordance with both the experimental and numerical results obtained by the CFD approach.

参考
  1. Aouadi, A., Bellakhal, G., and Chahed, J., Effect of the Turbulent Contribution of the Interfacial Momentum Transfer on the Bubbles Dynamics and Void Fraction Distribution in Vertical Bubbly Jets, Int. J. Multiphase Flow, vol. 114, pp. 82-97, 2019.

  2. Auton, T.R., Hunt, J.C.R., and Prud'homme, M., The Force Exerted on a Body in Inviscid Unsteady Non-Uniform Rotational Flow, J. FluidMech, vol. 197, pp. 241-257, 1988.

  3. Ayed, H., Chahed, J., and Roig, V., Hydrodynamics and Mass Transfer in a Turbulent Buoyant Bubbly Shear Layer, AIChEJ., vol. 53, no. 11, pp. 2742-2753,2007.

  4. Bai, W., Experimental and Numerical Investigation of Bubble Column Reactors, Eindhoven, Netherlands: Technische Universiteit Eindhoven, 2010. DOI: 10.6100/IR693280.

  5. Bellakhal, G., Chaibina, F., and Chahed, J., Assessment of Turbulence Models for Bubbly Flows: Toward a Five-Equation Turbulence Model, Chem. Eng. Sci., vol. 220, p. 115425, 2019. DOI: 10.1016/j.ces.2019.115425.

  6. Bridge, A., Lapidus, L., and Elgin, J., The Mechanics of Vertical Gas-Liquid Fluidized System. Part I: Countercurrent Flow, AIChEJ, vol. 10, no. 6, pp. 819-826, 1964.

  7. Chahed, J., Aouadi, A., Rezig, M., and Bellakhal, G., The Phenomenon of Bubbles Negative Relative Velocity in Vertical Bubbly Jets, J. Fluids Eng., vol. 138, no. 12, p. 121301, 2016.

  8. Chahed, J., Bellakhal, G., and Masbernat, L., Turbulence and Pseudo-Turbulence Modelling in Low and High Void Fraction Bubbly Flows, in Proc. of 5th International Conference on Multiphase Flow (ICMF'05), Yokohama, Japan, 2004.

  9. Chahed, J., Colin, C., and Masbernat, L., Turbulence and Phase Distribution in Bubbly Pipe Flow under Micro-Gravity Condition, J. Fluid Eng., vol. 124, no. 4, pp. 951-956,2002.

  10. Chahed, J., Roig, V., and Mabernat, L., Eulerian-Eulerian Two-Fluid Model for Turbulent Gas-Liquid Bubbly Flows, Int. J. Multiphase Flow, vol. 29, no. 1, pp. 23-49, 2003.

  11. Chaibina, F., Bellakhal, G., and Chahed, J., First and Second Order Turbulence Closures Applied to Homogeneous Turbulent Bubbly Flows, J. Appl. FluidMech., vol. 12, no. 6, pp. 1813-1823, 2019.

  12. Clift, R., Grace, J.R., and Weber, M.E., Bubbles, Drops and Particles, New York: Academic Press, 1978.

  13. Colombet, D., Legendre, D., Risso, F., Cockx, A., and Guiraud, P., Dynamics and Mass Transfer of Rising Bubbles in a Homogenous Swarm at Large Gas Volume Fraction, J. Fluid Mech, vol. 763, pp. 254-285, 2015.

  14. Deen, N.G., Van Sint Annaland, M., and Kuipers, J.A.M., Multi-Scale Modeling of Dispersed Gas-Liquid Two-Phase Flow, Chem. Eng. Sci, vol. 59, pp. 1853-1861, 2004.

  15. Dijkhuizen, W., Roghair, I., Van Sint Annaland, M., and Kuipers, J.A.M., DNS of Gas Bubbles Behaviour Using an Improved 3D Front Tracking Model-Drag Force on Isolated Bubbles and Comparison with Experiments, Chem. Eng. Sci., vol. 65, no. 4, pp. 1415-1426, 2010.

  16. Drew, D.A. and Wood, R.T., Overview and Taxonomy of Models and Methods, in Proc. of International Workshop on Two-Phase Flow Fundamentals, National Bureau of Standards, Gaithersburg, Maryland, September 22-27,1985.

  17. Garnier, C., Lance, M., and Marie, J., Measurement of Local Flow Characteristics in Buoyancy-Driven Bubbly Flow at High Void Fraction, Exp. Therm. Fluid Sci., vol. 26, pp. 811-815,2002.

  18. Gatignol, R., The Faxen Formulae for a Rigid Particle in an Unsteady Non-Uniform Stokes Flow, J. Mec. Theor. Appl., vol. 9, pp. 143-160, 1983.

  19. Hibiki, T. and Ishii, M., Lift Force in Bubbly Flow Systems, Chem. Eng. Sci, vol. 62, pp. 6457-6474,2007.

  20. Ishii, M., Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolls, Collection de la Direction des tudes et Recherche d'lectricit de France, 1975.

  21. Ishii, M. and Chawla, T.C., Local Drag Laws in Dispersed Two-Phase Flow, Technicl Report, Argonne National Laboratory, Lemont, IL, 1979.

  22. Kamath, S., Padding, J.T., Buist, K.A., and Kuipers, J.A.M., Stochastic DSMC Method for Dense Bubbly Flows: Methodology, Chem. Eng. Sci, vol. 176, pp. 454-475, 2018.

  23. Lane, C.D., Parisien, V., Macchi, A., and Donaldson, A.A., Investigation of Bubble Swarm Drag at Elevated Pressure in a Contaminated System, Chem. Eng. Sci, vol. 152, pp. 381-391, 2016.

  24. Larue de Tournemine, A., Etude Experimentale de l'Effet du Taux de Vide en Ecoulements Diphasiques Bulles, PhD, Institut National Polytechnique de Toulouse, Toulouse, France, 2001.

  25. Legendre, D. and Magnaudet, J., The Lift Force on a Spherical Bubble in a Viscous Linear Shear Flow, J. Fluid Mech, vol. 368, pp. 81-126, 1998.

  26. Lockett, M. and Kirkpatrick, R., Ideal Bubbly Flow and Actual Flow in Bubble Columns, Trans. Inst. Chem. Eng., vol. 53, pp. 267-273, 1975.

  27. Lopez de Bertodano, M., Lee, S.J., Lahey, R.T., and Drew, D.A., The Prediction of Two-Phase Turbulence and Phase Distribution Using a Reynolds Stress Model, J. Fluids Eng., vol. 112, pp. 107-113, 1990.

  28. Lopez de Bertonado M., Lee, S.J., Lahey, R.T., and Jones, O.C., Development of a k-e Model for Bubbly Two-Phase Flow, J. Fluids Eng., vol. 116, pp. 128-134,1994.

  29. Maxey, R. and Riley, J., Equation of Motion for a Small Rigid Sphere in Non-Uniform Flow, Phys. Fluids, vol. 26, no. 4, pp. 883-889,1983.

  30. McClure, D.D., Kavanagh, J.M., Fletcher, D.F., and Barton, G.W., Development of a CFD Model of Bubble Column Bioreactors: Part Two-Comparison of Experimental Data and CFD Predictions, Chem. Eng. Technol., vol. 37, no. 1, pp. 131-140,2014.

  31. McClure, D.D., Kavanagh, J.M., Fletcher, D.F., and Barton, G.W., Experimental Investigation into the Drag Volume Fraction Correction Term for Gas-Liquid Bubbly Flows, Chem. Eng. Sci., vol. 170, pp. 91-97, 2017.

  32. Mrabtini, H.A., Bellakhal, G., and Chahed, J., Analysis of the Homogeneous Turbulence Structure in Uniformly Sheared Bubbly Flow, Nucl. Eng. Des, vol. 320, pp. 112-122, 2017.

  33. Rabha, S.S. and Buwa, V.V., Experimental Investigations of Rise Behavior of Monodispersed/Polydispersed Bubbly Flows in Quiescent Liquids, Ind. Eng. Chem. Res., vol. 49, pp. 10615-10626, 2010.

  34. Rezig, M., Bellakhal, G., and Chahed, J., Phase Distribution in Dispersed Liquid-Liquid Flow in Vertical Pipe: Mean and Turbulent Contributions of Interfacial Force, AIChEJ., vol. 63, pp. 4214-4223,2017.

  35. Richardson, J. and Zaki, W., Sedimentation and Fluidization: Part I, Trans. Inst. Chem. Eng., vol. 32, pp. 35-53, 1954.

  36. Risso, F. and Ellingsen, K., Velocity Fluctuations in a Homogeneous Dilute Dispersion of High-Reynolds-Number Rising Bubbles, J. Fluid Mech, vol. 453, pp. 395-410, 2002.

  37. Roghair, I., Annaland, M.V.S., and Kuipers, J.A.M., Drag Force and Clustering in Bubble Swarms, AIChE J, vol. 59, pp. 1791-1800, 2013.

  38. Roghair, I., Lau, Y.M., Deen, N.G., Slagter, H.M., Baltussen, M.W., Annaland, M.V.S., and Kuipers, J.A.M., On the Drag Force of Bubbles in Bubble Swarms at Intermediate and High Reynolds Numbers, Chem. Eng. Sci, vol. 66, pp. 3204-3211, 2011.

  39. Rusche, H. and Issa, R., The Effect of Voidage on the Drag Force on Particles, Droplets and Bubbles in Dispersed Two-Phase Flow, in Proc. of Japanese European Two-Phase Flow Meeting, Tsukuba, Japan, 2000.

  40. Rzehak, R. and Kriebitzsch, S., Multiphase CFD-Simulation of Bubbly Pipe Flow: A Code Comparison, Int. J. Multiphase Flow, vol. 68, pp. 135-152,2015.

  41. Rzehak, R., Ziegenhein, T., Kriebitzsch, S., Krepper, E., and Lucas, D., Unifed Modeling of Bubbly Flows in Pipes, Bubble Columns, and Airlift Columns, Chem. Eng. Sci., vol. 157, pp. 147-158, 2017.

  42. Simonnet, M., Gentric, C., Olmos, E., andMidoux, N., Experimental Determination of the Drag Coefficient in a Swarm of Bubbles, Chem. Eng. Sci, vol. 62, pp. 858-866, 2007.

  43. Tomiyama, A., Struggle with Computational Bubble Dynamics, in Proc. of 3rd International Conference on Multiphase Flow, Lyon, France, pp. 1-18, 1998.

  44. Tomiyama, A., Kataoka, I., Zun, I., and Sakaguchi, T., Drag Coefficients of Single Bubbles under Normal and Micro Gravity Conditions, JSMEInt. J, Ser. B, vol. 41, no. 2, pp. 472-479, 1998.

  45. Uberoit, M.S. and Freymuth, P., Turbulent Energy Balance and Spectra of Axisymmetric Wake, Phys. Fluids, vol. 13, no. 9, pp. 2205-2210,1970.

  46. Uchiyama, T., Numerical Prediction of Added Mass and Damping for a Cylinder Oscillating in Confined Incompressible Gas-Liquid Two-Phase Mixture, Nucl. Eng. Des, vol. 222, pp. 68-78, 2003.

  47. Unverdi, S. and Tryggvason, G., A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows, J. Comput. Phys, vol. 100, no. 1, pp. 25-37, 1992.

  48. Wilcox, D.C., Turbulence Modelling for CFD, La Canada, CA: DCW Industries, 2000.

  49. Zenit, R., Koch, D.L., and Sangani, A.S., Measurements of the Average Properties of a Suspension of Bubbles Rising in a Vertical Channel, J. Fluid Mech., vol. 429, pp. 307-342,2001.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain