ライブラリ登録: Guest
Multiphase Science and Technology

年間 4 号発行

ISSN 印刷: 0276-1459

ISSN オンライン: 1943-6181

SJR: 0.144 SNIP: 0.256 CiteScore™:: 1.1 H-Index: 24

Indexed in

DRAG CORRELATIONS OF ELLIPSOIDAL BUBBLES IN CLEAN AND FULLY CONTAMINATED SYSTEMS

巻 31, 発行 3, 2019, pp. 215-234
DOI: 10.1615/MultScienTechn.2019031210
Get accessGet access

要約

Effects of surface-active agents (surfactants) and bubble aspect ratios on the terminal velocity of single ellipsoidal bubbles rectilinearly rising through stagnant liquids were investigated to develop a reliable drag coefficient CD correlation for fully contaminated bubbles in the viscous-force dominant regime. Experimental data of CD obtained in our previous studies were used. Triton X-100, 1-octanol, 1-decanol, and sodium dodecyl sulfate (SDS) were used for surfactant in the experiments. A simple functional form of CD expressed in terms of the bubble Reynolds number Re and the bubble aspect ratio E was proposed. The proposed correlation gives good evaluations of CD for fully contaminated bubbles for −8.0 ≤ logM ≤ −3.2, 0.53 ≤ Re ≤ 166, and 0.12 ≤ Eo ≤ 8.21, where M is the Morton number, Re the bubble Reynolds number, and Eo the Eötvös number. A CD correlation for clean ellipsoidal bubbles was also proposed by taking into account the shape effects on CD. The functional form of the CD correlation is much simpler than available correlations, whereas the accuracy is almost the same. The applicable range of the CD correlation for clean bubbles is −11 ≤ logM ≤ 0.63, 3.2 × 10−3 ≤ Re ≤ 720, and 0.042 ≤ Eo ≤ 29.

参考
  1. Aoyama, S., Hayashi, K., Hosokawa, S., and Tomiyama, A., Shapes of Ellipsoidal Bubbles in Infinite Stagnant Liquids, Int. J. Multiphase Flow, vol. 79, pp. 23-30, 2016.

  2. Aoyama, S., Hayashi, K., Hosokawa, S., and Tomiyama, A., Shapes of Single Bubbles in Infinite Stagnant Liquids Contaminated with Surfactant, Exp. Therm. Fluid Sci., vol. 96, pp. 460-469,2018.

  3. Clift, R., Grace, J., and Weber, M., Bubbles, Drops, and Particles, Cambridge, MA: Academic Press, 1978.

  4. Ganser, G.H., A Rational Approach to Drag Prediction of Spherical and Non-Spherical Particles, Powder Technol., vol. 77, pp. 143-152, 1993.

  5. Hadamard, J.S., Mouvement Permanent Tent d'une Sphere Liquide et Visquese Dans un Liquide Visqueux, Comptes Rendus I'Academie Sci., vol. 152, pp. 1735-1738, 1911.

  6. Hayashi, K. and Tomiyama, A., Interface Tracking Methods, in Encyclopedia of Two-Phase Heat Transfer and Flow III, Singapore: World Scientific, Chap. 2,2018.

  7. Holzer, A. and Sommerfeld, M., New Simple Correlation Formula for the Drag Coefficient of Non-Spherical Particles, Powder Technol, vol. 184, pp. 361-365, 2008.

  8. Kurimoto, R., Hayashi, K., and Tomiyama, A., Terminal Velocity of Clean and Fully-Contaminated Drops in Vertical Pipes, Int. J. Multiphase Flow, vol. 49, pp. 8-23, 2013.

  9. Leith, D., Drag on Nonspherical Objects, Aerosol Sci. Technol., vol. 6, pp. 153-161,1987.

  10. Levich, V., Physicochemical Hydrodynamics, Englewood Cliffs, NJ: Prentice Hall, 1962.

  11. Liu, L., Yan, H., Zhao, G., and Zhuang, J., Experimental Studies on the Terminal Velocity of Air Bubbles in Water and Glycerol Aqueous Solution, Exp. Therm. Fluid Sci., vol. 78, pp. 254-265, 2016.

  12. Loth, E., Drag of Non-Spherical Solid Particles of Regular and Irregular Shape, Powder Technol., vol. 182, no. 3, pp. 342-353, 2008.

  13. Mei, R., History Force on a Sphere due to a Step Change in the Free-Stream Velocity, Int. J. Multiphase Flow, vol. 19, pp. 509-525,1993.

  14. Mei, R., Kalusner, J.F., and Lawrence, C.J., A Note on the History Force on a Spherical Bubble at Finite Reynolds Number, Phys. Fluids, vol. 6, pp. 418-420, 1994.

  15. Meier, M., Towards a DNS of Multiphase Flow, Institutor Energietechnik, Zurich, Germany, Internal Rep. LA-8355, 2000.

  16. Militzer, J., Kan, J.M., Hamdullahpur, F., Amyotte, P.R., and Al Taweel, A.M., Drag Coefficient for Axisymmetric Flow around Individual Spheroidal Particles, Powder Technol., vol. 57, pp. 193-195, 1989.

  17. Min, C. and Gibou, F., A Second Order Accurate Level Set Method on Non-Graded Adaptive Cartesian Grids, J. Comput. Phys., vol. 225, no. 1, pp. 300-321, 2007.

  18. Moore, D.W., The Velocity Rise of Distorted Gas Bubbles in a Liquid of Small Viscosity, J. Fluid Mech., vol. 23, pp. 749-766, 1965.

  19. Rastello, M., Marie, J.-L., and Lance, M., Drag and Lift Forces on Clean Spherical and Ellipsoidal Bubbles in a Solid-Body Rotating Flow, J. Fluid Mech, vol. 682, pp. 434-459,2011.

  20. Rybczynski, W., On the Translatory of a Fluid Sphere in a Viscous Medium, Bull. Acad. Sci. Kracow, Ser. A, pp. 40-46, 1911.

  21. Schiller, L. and Naumann, A.Z., Uber die Grundlegenden Berechnungen bei der Schwerkraftaufbereitung, Zeitschridt Vereines Deutscher Ingenieure., vol. 44, pp. 318-320, 1933.

  22. Sugihara, K., Sanada, T., Shirota, M., and Watanabe, M., Behavior of Single Rising Bubbles in Superpurified Water, Kagaku Kogaku Ronbunshu, vol. 5, pp. 402-408, 2007 (in Japanese).

  23. Sussman, M., Smereka, P., and Osher, S., A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, J. Comput. Phys, vol. 114, pp. 146-159, 1994.

  24. Sussman, M., Fatemi, E., Smereka, P., and Osher, S., An Improved Level Set Method for Incompressible Two-Phase Flows, Comp. Fluids, vol. 27, pp. 663-680, 1998.

  25. Takagi, S., Ogasawara, T., and Matsumoto, Y., The Effects of Surfactant on the Multiscale Structure of Bubbly Flows, Philosoph. Trans, Ser. A, vol. 366, pp. 2117-2129,2008.

  26. Takagi, S., Uda, T., Watanabe, Y., and Matsumoto, Y., Behavior of a Rising Bubble in Water with Surfactant Dissolution, Trans. Jpn. Soc. Mech. Eng., vol. 69, no. 686, pp. 2192-2199, 2003 (in Japanese).

  27. Tomiyama, A., Kataoka, I., Zun, I., and Sakaguchi, T., Drag Coefficients of Single Bubbles under Normal and Micro Gravity Conditions, JSMEInt., vol. 41, no. 2, pp. 472-479,1998.

によって引用された
  1. Hayashi Kosuke, Legendre Dominique, Tomiyama Akio, Lift Coefficients of Clean Ellipsoidal Bubbles in Linear Shear Flows, International Journal of Multiphase Flow, 129, 2020. Crossref

  2. Hayashi Kosuke, Hessenkemper Hendrik, Lucas Dirk, Legendre Dominique, Tomiyama Akio, Scaling of Lift Reversal of Deformed Bubbles in Air-Water Systems, International Journal of Multiphase Flow, 142, 2021. Crossref

  3. Sun Jinnan, Zhang Lin, Liu Xieming, Fan Yachao, Feng Yaocheng, Zhang Feng, Zhang Zhibing, Coupling model of motion and mass transfer in multicomponent desorption of fine bubbles, Chemical Engineering Journal, 436, 2022. Crossref

  4. Hayashi Kosuke, Chen Junming, Kurimoto Ryo, Tomiyama Akio, AN ANN CORRELATION OF LIFT COEFFICIENTS OF BUBBLES IN LINEAR SHEAR FLOWS , Multiphase Science and Technology, 34, 2, 2022. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain