ライブラリ登録: Guest
International Journal for Multiscale Computational Engineering

年間 6 号発行

ISSN 印刷: 1543-1649

ISSN オンライン: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Computational Homogenization of Nonlinear Hydromechanical Coupling in Poroplasticity

巻 4, 発行 5-6, 2006, pp. 693-732
DOI: 10.1615/IntJMultCompEng.v4.i5-6.80
Get accessGet access

要約

In this paper, we propose a new two-scale model of fluid-saturated elastoplastic porous media based on micromechanical considerations. A formal nonlinear homogenization procedure using asymptotic expansion techniques is adopted to up-scale the microscopic constitutive behavior of an elastoplastic solid coupled with the movement of a Stokesian fluid. Considering the yield criterion at the microscale governed by the Mohr-Coulomb function and that the plastic deformation obeys the principle of maximum dissipation, we build up, computationally, a sharper macroscopic yield criterion and provide precise two-scale computations for the effective parameters of the homogenized medium. Within this context, we show that the homogenized results incorporate additional features inherent to the nonlinear hydromechanical coupling that have been overlooked by the purely macroscopic approaches. Variational principles along with the corresponding Galerkin approximations are proposed to discretize the local nonlinear closure problems leading to numerical effective constitutive laws. The influence of the new constitutive features obtained at the Darcy-scale effective model is propagated to the field-scale and illustrated numerically in a example of land subsidence caused by oil extraction of a weak heterogeneous reservoir with hydraulic conductivity characterized by long-range correlations displaying fractal character.

によって引用された
  1. Boutin Claude, Kacprzak Grzegorz, Thiep Doanh, Compressibility and permeability of sand-kaolin mixtures. Experiments versus non-linear homogenization schemes, International Journal for Numerical and Analytical Methods in Geomechanics, 35, 1, 2011. Crossref

  2. Montero-Chacón Francisco, Sanz-Herrera José, Doblaré Manuel, Computational Multiscale Solvers for Continuum Approaches, Materials, 12, 5, 2019. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain