ライブラリ登録: Guest
International Journal for Multiscale Computational Engineering

年間 6 号発行

ISSN 印刷: 1543-1649

ISSN オンライン: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Mathematical and Biological Scientists Assess the State of the Art in RNA Science at an IMA Workshop, RNA in Biology, Bioengineering, and Biotechnology

巻 8, 発行 4, 2010, pp. 369-378
DOI: 10.1615/IntJMultCompEng.v8.i4.20
Get accessGet access

要約

Highlights of the IMA workshop RNA in Biology, Bioengineering, and Biotechnology are summarized, including recent developments in RNA secondary structure prediction and RNA design, innovative mathematical constructs for RNA structure, bioinformatics advances in RNA structure analysis and prediction, and experimental progress in RNA folding and imaging.

参考
  1. Baird, N., Westof, E., Qin, H., Pan, T., and Sosnick, T., Structures of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding. DOI: 10.1016/j.jmb.2005.07.010

  2. Bindewald, E., Hayes, R., Yingling, Y., Kasprzak, W., and Shapiro, B., RNAJunction: A database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. DOI: 10.1093/nar/gkm842

  3. Brion, P. andWestof, E., Hierarchy and dynamics of RNA folding. DOI: 10.1146/annurev.biophys.26.1.113

  4. Chworos, A., Severcan, I., Koyfman, A.,Weinkam, P., Oroudjev, E., Hansma, H., and Jaeger, L., Building programmable jigsaw puzzles with RNA. DOI: 10.1126/science.1104686

  5. Dirks, R., Lin, M., Winfree, E., and Pierce, N., Paradigms for computational nucleic acid design. DOI: 10.1093/nar/gkh291

  6. Dror, O., Nussinov, R., and Wolfson, H., The ARTS web server for aligning RNA tertiary structures. DOI: 10.1093/nar/gkl312

  7. Hamelryck, T., Kent, J., and Krogh, A., Sampling realistic protein conformations using local structural bias. DOI: 10.1371/journal.pcbi.0020131

  8. Heitsch, C., Condon, A., and Hoos, H., From RNA Secondary Structure to Coding Theory: A Combinatorial Approach.

  9. Hyeon, C. and Thirumalai, D., Multiple probes are required to explore and control the rugged energy landscape of RNA hairpins. DOI: 10.1021/ja0771641

  10. Ikawa, Y., Tsuda, K., Matsumura, S., and Inoue, T., De Novo synthesis and development of an RNA enzyme. DOI: 10.1073/pnas.0405886101

  11. Jaeger, L. and Chworos, A., The architectonics of programmable RNA and DNA nanostructures. DOI: 10.1016/j.sbi.2006.07.001

  12. Kim, N., Gan, H., and Schlick, T., Computational proposal of structured RNA pools for in vitro selection of RNAs.

  13. Kim, N., Shin, J., Elmetwaly, S., Gan, H., and Schlick, T., RAGPOOLS: RNA-as-graph-pools-A web server for assisting the design of structured RNA pools for in vitro selection. DOI: 10.1093/bioinformatics/btm439

  14. Kim, N., Izzo, J. A., Elmetwely, S., Gan, H. H., and Schlick, T., Computational generation and screening of RNA motifs in large nucleotide sequence pools. DOI: 10.1093/nar/gkq282

  15. Koculi, E., Hyeon, C., Thirumalai, D., and Woodson, S., Charge density of divalent metal cations determines RNA stability. DOI: 10.1021/ja068027r

  16. Laing, C. and Schlick, T., Computational approaches to 3D modeling of RNA. DOI: 10.1088/0953-8984/22/28/283101

  17. Lareau, L., Inada, M., Green, R., Wengrod, J., and Brenner, S., Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. DOI: 10.1038/nature05676

  18. Leontis, N., Altman, R., Berman, H., Brenner, S., Brown, J., Engelke, D., Harvey, S., Holbrook, S., Jossinet, F.,Lewis, S., Major, F., Mathews, D., Richardson, J., Williamson, J., and Westof, E., The RNA ontology consortium: An open invitation to the rna community. DOI: 10.1261/rna.2343206

  19. Lescoute, A. andWestof, E., The interaction networks of structured RNAs. DOI: 10.1093/nar/gkl963

  20. Mathews, D., Sabina, J., Zuker, M., and Turner, D., Expanded Sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. DOI: 10.1006/jmbi.1999.2700

  21. Mathews, D. and Turner, D., Dynalign: An algorithm for Finding the secondary structure common to two RNA sequences. DOI: 10.1006/jmbi.2001.5351

  22. Muckstein, U., Tafer, H., Hackermuller, J., Bernhart, S., Stadler, P., and Hofacker, I., Thermodynamics of RNARNA binding. DOI: 10.1093/bioinformatics/btl024

  23. Ndifon, W. and Nkwanta, A., An RNA foldability metric; Implications for the design of rapidly foldable RNA sequences. DOI: 10.1016/j.bpc.2005.11.012

  24. Parisien, M. and Major, F., The MC-fold and MC-sym pipeline infers RNA structure from sequence data. DOI: 10.1038/nature06684.

  25. Pedersen, J., Bejerano, G., Siepel, A., Rosenbloom, K., Lindblad-Toh, K., Lander, E., Kent, J., Miller, W., and Haussler, D., Identification and classification of conserved RNA secondary structures in the human genome. DOI: 10.1371/journal.pcbi.0020033

  26. Reeder, J., Reeder, J., and Giegerich, R., Locomotif: From graphical motif description to RNA motif search. DOI: 10.1093/bioinformatics/btm179

  27. Rong, Y. and Luse, K., Examples of knots with the same polynomials. DOI: 10.1142/S0218216506004725

  28. Saito, H. and Inoue, T., RNA and RNP as newmolecular parts in synthetic biology. DOI: 10.1016/j.jbiotec.2007.07.952

  29. Sarver, M., Zirbel, C., Stombaugh, J., Mokdad, A., and Leontis, N., FR3D: Finding local and composite recurrent structural motifs in RNA 3D structures. DOI: 10.1007/s00285-007-0110-x

  30. St-Onge, K., Thinault, P., Hamel, S., and Major, F., Modeling RNA tertiary structure motifs by graph grammers. DOI: 10.1093/nar/gkm069

  31. Vernizzi, G., Orland, H., and Zee, A., Enumeration of RNA structures by matrix models. DOI: 10.1103/PhysRevLett.94.168103

  32. Wilson, T., McLeod, A., and Lilley, D., A guanine nucleobase important for catalysis by the VS ribozyme. DOI: 10.1038/sj.emboj.7601698

  33. Wong, T., Sosnick, T., and Pan, T., Folding of noncoding RNAs during transcription facilitated by pausing-induced nonnative structures. DOI: 10.3410/f.1098109.554093

  34. Xin, Y., Laing, C., Leontis, N., and Schlick, T., Annotation of tertiary interactions in RNA structures reveals variations and correlations. DOI: 10.1261/rna.1249208

  35. Yin, P., Choi, H., Calvert, C., and Pierce, N., Programming biomolecular self-assembly pathways. DOI: 10.1038/nature06451

  36. Yingling, Y. and Shapiro, B., Computational design of an RNA hexagonal nanoring and an RNA nanotube. DOI: 10.1021/nl070984r

  37. Zhu, H., Yuan, Q., Casselman, A., Emery-Le, M., Emery, P., and Reppert, S. M., Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. DOI: 10.1371/journal.pbio.0060004

  38. Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction. DOI: 10.1093/nar/gkg595

  39. Zuker, M. and Stiegler, P., Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. DOI: 10.1093/nar/9.1.133

によって引用された
  1. Jager Sven, Schiller Benjamin, Strufe Thorsten, Hamacher Kay, StreAM- $$T_g$$ : Algorithms for Analyzing Coarse Grained RNA Dynamics Based on Markov Models of Connectivity-Graphs, in Algorithms in Bioinformatics, 9838, 2016. Crossref

  2. Jager Sven, Schiller Benjamin, Babel Philipp, Blumenroth Malte, Strufe Thorsten, Hamacher Kay, StreAM- $$T_g$$ T g : algorithms for analyzing coarse grained RNA dynamics based on Markov models of connectivity-graphs, Algorithms for Molecular Biology, 12, 1, 2017. Crossref

  3. Schmidt Michael, Hamacher Kay, Reinhardt Felix, Lotz Thea S., Groher Florian, Suess Beatrix, Jager Sven, SICOR: Subgraph Isomorphism Comparison of RNA Secondary Structures, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17, 6, 2020. Crossref

  4. Schlick Tamar, Molecular Dynamics: Further Topics, in Molecular Modeling and Simulation: An Interdisciplinary Guide, 21, 2010. Crossref

  5. Schlick Tamar, Protein Structure Introduction, in Molecular Modeling and Simulation: An Interdisciplinary Guide, 21, 2010. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain