ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v7.i4.80
pages 351-370

A Multiscale Framework for Analyzing Thermo-Viscoelastic Behavior of Fiber Metal Laminates

Sourabh Sawant
Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, USA
Anastasia Muliana

要約

Fiber metal laminate (FML) is a multilayered composite system that consists of alternate layers of metal and fiber-reinforced polymers. These composite systems can exhibit timedependent behavior due to the time-dependent responses in one or more of their constituents. The time-dependent behavior is further intensified under the influence of high temperatures and stress levels, resulting in a nonlinear stress- and temperature-dependent viscoelastic response. A multiscale framework is formulated to predict the overall nonlinear time-dependent response of the FML by integrating different constitutive material models of the constituents. The multiscale framework includes a micromechanical model for ply level homogenization. The upper (structural) level uses a layered composite finite element (FE) with multiple integration points through the thickness. The micromodel is implemented at these integration points. It is also possible to develop a sublaminate model for a laminate-level homogenization and integrate it into continuum 3D or shell elements within the FE code. Thermoviscoelastic constitutive models of homogenous orthotropic materials are used at the lowest constituent level, that is, fiber, matrix, and metal. The nonlinear and time-dependent response of the constituents requires the use of suitable correction algorithms (iterations) at various levels of the framework.

参考

  1. Yu, Q. and Fish, J., Multi-scale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: A coupled thermo-viscoelastic example problem. DOI: 10.1016/S0020-7683(02)00255-X

  2. Fish, J. and Shek, K., Multi-scale analysis of composite materials and structures. DOI: 10.1016/S0266-3538(00)00048-8

  3. Pecknold, D. and Haj-Ali, R., Integrated micromechanical/structural analysis of laminated composites.

  4. Haj-Ali, R., Nested nonlinear multiscale framework for the analysis of thick-section composite materials and structures. DOI: 10.1007/978-0-387-68556-4_8

  5. Muliana, A. H. and Haj-Ali, R. M., Multi-scale modeling for the long-term behavior of FRP composite structures.

  6. Muliana, A. H. and Haj-Ali, R. M., A multiscale framework for layered composites with thermo-rheologically complex behaviors. DOI: 10.1016/j.ijsolstr.2008.01.015

  7. Fish, J., Shek, K., Pandheeradi, M., and Shepard, M., Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. DOI: 10.1016/S0045-7825(97)00030-3

  8. Aboudi, J., Mechanics of Composite Materials: A Unified Micromechanical Approach.

  9. Christensen, R. M., Mechanics of Composite Materials.

  10. Nemat-Nasser, S. and Hori, M., Micromechanics: Overall Props. of Heterogeneous Materials.

  11. Haj-Ali, R. and Muliana, A., A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures. DOI: 10.1016/j.ijsolstr.2004.02.008

  12. Muliana, A. H. and Sawant, S. P., Responses of fiber reinforced polymer composites having time and temperature dependent constituent properties. DOI: 10.1007/s00707-008-0052-4

  13. Haddad, Y. M. and Tanari, S., On the micromechanical characterization of the creep response of a class of composite systems. DOI: 10.1115/1.3265655

  14. Brinson, L. C. and Knauss, W. G., Thermorheologically complex behavior of multiphase viscoelastic materials. DOI: 10.1016/0022-5096(91)90009-D

  15. Hashin, Z., Humprey, E. A., and Goering, J., Analysis of thermoviscoelastic behavior of unidirectional fiber composites. DOI: 10.1016/0266-3538(87)90052-2

  16. Sadkin, Y. and Aboudi, J., Viscoelastic behavior of thermo-rheologically complex resin matrix composites. DOI: 10.1016/0266-3538(89)90047-X

  17. Aboudi, J., Micromechanical characterization of the non-linear viscoelastic behavior of resin matrix composites. DOI: 10.1016/0266-3538(90)90022-W

  18. Reddy, J. N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis.

  19. Van Rooijen, R., Sinke, J., De Vries, T., and Van der Zwaag, S., Property optimisation in fibre metal laminates. DOI: 10.1023/B:ACMA.0000012880.01669.c0

  20. Chen, J. and Sun, C. T., Modeling of orthotropic elastic-plastic properties of ARALL laminates. DOI: 10.1016/0266-3538(89)90045-6

  21. Hashagen, F., Schellekens, J., and Borst, R., Finite element procedure for modeling fibre metal laminates. DOI: 10.1016/0263-8223(95)00083-6

  22. Barbero, E. J., Reddy, J. N., and Teply, J. L., Accurate determination of stresses in ARALL laminates using a generalized laminate plate theory.

  23. Haj-Ali, R. M. and Muliana, A. H., A microto- meso sublaminate model for the viscoelastic analysis of thick-section multi-layered FRP composite structures. DOI: 10.1007/s11043-007-9041-6

  24. Schapery, R. A., On the characterization of nonlinear viscoelastic materials. DOI: 10.1002/pen.760090410

  25. Lou, Y. C. and Schapery, R. A., Viscoelastic characterization of a nonlinear fiber-reinforced plastic. DOI: 10.1177/002199837100500206

  26. Ramberg, W. and Osgood, W. R., Description of stress-strain curves by three parameters.

  27. Sawant, S. and Muliana, A., A thermomechanical viscoelastic analysis of orthotropic media. DOI: 10.1016/j.compstruct.2007.03.008

  28. Pindera, M., Williams, T., and Machaeret, Y., Time-dependant response of aramid-epoxyaluminium sheet, ARALL laminates. DOI: 10.1002/pc.750100509

  29. White, S. R. and Hartman, A. B., Effect of cure state on stress relaxation in 3501-6 epoxy resin. DOI: 10.1115/1.2812254

  30. Walton, P. L. and Majumdar, A. J., Creep of kevlar-49 fibre and a kevlar-49 cement composite. DOI: 10.1007/BF00700774

  31. Wang, J. Z. and Dillard, D. A., Testing of viscoelasticity of single fibers under transient moisture conditions.

  32. Peretz, D. and Weitsman, Y., The nonlinear thermoviscoelastic characterizations of FM-73 adhesive. DOI: 10.1122/1.549700