ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v7.i4.60
pages 309-328

Crack-Centered Enrichment for Debonding in Two-Phase Composite Applied to Textile Reinforced Concrete

Rostislav Chudoba
RWTH Aachen University
Jakub Jerabek
Structural Statics and Dynamics, RWTH Aachen, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany
Frank Peiffer
Structural Statics and Dynamics, RWTH Aachen, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany

要約

This article introduces an enriched finite element representation of crack bridges suitable for simulating the complex damage processes in textile-reinforced concrete. The heterogeneity of both the matrix and the reinforcement occurs at similar length scales of the material structure. Consequently, an improved accuracy of approximation at the hot spots of damage is required to capture the relevant damage mechanisms. This is done by combining the extended finite element method with the variational multiscale approach. While the former is used to define the crack in the matrix, the latter serves for local resolution of the displacement fields in the vicinity of the crack. The approach is exemplified on a 1D example of a tension bar with interacting cracks and on the detailed analysis of debonding in a shear zone of a bending specimen

参考

  1. Scholzen, A., Chudoba, R., and Hegger, J., Numerical simulation of textile reinforced concrete using a microplane-type model with initial anisotropy. DOI: 10.4203/ccp.88.261

  2. Konrad, M., Jerabek, J., Vorechovck y, and Chudoba, R., Evaluation of mean performance of cracks bridged by multifilament yarns.

  3. Konrad, M., Chudoba, R., and Jerabek, J., Influence of the heterogeneity at the microlevel on the multi-cracking performance of textile reinforced concrete.

  4. Melenk, J. M. and Babuska, I., The partition of unity finite element method: Basic theory and applications. DOI: 10.1016/S0045-7825(96)01087-0

  5. Belytchko, T. and Black, T., Elastic crack growth in finite elements with minimal remeshing. DOI: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

  6. Moes, N., Dolbow, J., and Belytchko, T., A finite element method for crack growth without remeshing. DOI: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

  7. Daux, C., Moes, N., Dolbow, J., Sukumar, N., and Belytchko, T., Arbitrary branched and intersecting cracks with the extended finite element method. DOI: 10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L

  8. Sukumar, N., Moes, N., Moran, B., and Belytchko, T., Extended finite element method for three-dimensional crack modelling. DOI: 10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A

  9. Stolarska, M., Chopp, D. L., Moes, N., and Belytchko, T., Modelling crack growth by level sets in the extended finite element method. DOI: 10.1002/nme.201

  10. Osher, S. and Sethian, J. A., Front propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. DOI: 10.1016/0021-9991(88)90002-2

  11. Belytchko, T., Moes, N., Usui, S., and Parimi, C., Arbitrary discontinuities in finite elements. DOI: 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M

  12. Zi, G. and Belytchko, T., New crack-tip elements for XFEM and applications to cohesive cracks. DOI: 10.1002/nme.849

  13. Hughes, T. J. R., Feijoo, G. R., and Quincy, J.- B., The variational multiscale method: A paradigm for computational mechanics. DOI: 10.1016/S0045-7825(98)00079-6

  14. Benning, W., Gortz, S., Lange, J., Schwermann, R., and Chudoba, R., An algorithm for automatic analysis of deformation of reinforced concrete structures using photogrammetry.