ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i4.40
pages 395-408

PERTURBATION-BASED STOCHASTIC MICROSCOPIC STRESS ANALYSIS OF A PARTICLE-REINFORCED COMPOSITE MATERIAL VIA STOCHASTIC HOMOGENIZATION ANALYSIS CONSIDERING UNCERTAINTY IN MATERIAL PROPERTIES

Sei-ichiro Sakata
Department of Electronic and Control Systems Engineering, Interdisciplinary Faculty of Science and Engineering, Shimane University, Japan
F. Ashida
Department of Electronic and Control Systems Engineering, Interdisciplinary Faculty of Science and Engineering, Shimane University, Japan
K. Enya
Graduate School of Shimane University, Japan

要約

This paper discusses stochastic multiscale stress analysis of a particle-reinforced composite material via the stochastic homogenization analysis. A microscopic random variation causes a random variation of a homogenized property and microscopic stress. For this stochastic stress analysis, a first-order perturbation-based approach is employed. The perturbation-based approach consists of stochastic homogenization, stochastic macroscopic, and microscopic stress analysis procedures. As an example, stochastic microscopic stress analysis for a microscopic random variation of a glass particle-reinforced composite material using the perturbation-based technique is performed. The obtained results are compared with the results of the Monte Carlo simulation; validity and application limit of the first-order perturbation-based approach is investigated.

参考

  1. Guedes, M. and Kikuchi, N., Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. DOI: 10.1016/0045-7825(90)90148-F

  2. Kaminski, M., Stochastic finite element method homogenization of heat conduction problem in fiber composites.

  3. Kaminski, M., Generalized perturbation-based stochastic finite element method in elastostatics. DOI: 10.1016/j.compstruc.2006.08.077

  4. Kaminski, M., Sensitivity and randomness in homogenization of periodic fiber-reinforced composites via the response function method. DOI: 10.1016/j.ijsolstr.2008.10.003

  5. Kaminski, M. and Kleiber, M., Perturbation based stochastic finite element method for homogenization of two-phase elastic composites. DOI: 10.1016/S0045-7949(00)00116-4

  6. Lombardo, M., Zeman, J., Sejnoha, M., and Falsone, G., Stochastic modeling of chaotic masonry via mesostructural characterization. DOI: 10.1615/IntJMultCompEng.v7.i2.70

  7. Ostoja-Starzewski, M., Microstructural randomness versus representative volume element in thermomechanics. DOI: 10.1115/1.1410366

  8. Press, W. H., Teukolski, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in C (Japanese edition).

  9. Sakata, S., Ashida, F., Kojima, T., and Zako, M., Influence of uncertainty in microscopic material property on homogenized elastic property of unidirectional fiber reinforced composites.

  10. Sakata, S., Ashida, F., Kojima, T., and Zako, M., Three-dimensional stochastic analysis using a perturbation-based homogenization method for homogenized elastic property of inhomogeneous material considering microscopic uncertainty.

  11. Sakata, S., Ashida, F., and Zako, M., Stochastic response analysis of FRP using the second-order perturbation-based homogenization method. DOI: 10.1299/jmmp.2.70

  12. Sakata, S., Ashida, F., and Zako, M., Kriging-based approximate stochastic homogenization analysis for composite material. DOI: 10.1016/j.cma.2007.12.011

  13. Sakata, S., Ashida, F., and Kojima, T., Stochastic homogenization analysis on elastic properties of fiber reinforced composites using the equivalent inclusion method and perturbation method. DOI: 10.1016/j.ijsolstr.2008.08.017

  14. Sakata, S. and Ashida, F., Ns-Kriging based microstructural optimization applied to minimizing stochastic variation of homogenized elasticity of fiber reinforced composites. DOI: 10.1007/s00158-008-0296-6

  15. Sakata, S. and Ashida F., Stochastic analysis of microscopic stress in fiber reinforced composites considering uncertainty in a microscopic elastic property.

  16. Sakata, S., Ashida, F., and Kojima, T., Stochastic homogenization analysis for thermal expansion coefficients of fiber reinforced composites using the equivalent inclusion method with perturbation-based approach. DOI: 10.1016/j.compstruc.2009.12.007

  17. Sakata, S. and Ashida, F., A hierarchical stochastic homogenization method for particle-reinforced composite materials considering non-uniform distribution of microscopic random quantities. DOI: 10.1007/s00466-011-0604-7

  18. Stefanou, G., The stochastic finite element method: Past, present and future. DOI: 10.1016/j.cma.2008.11.007

  19. Xu, X. F. and Graham-Brady, L., Computational stochastic homogenization of random media elliptic problems using Fourier Galerkin method. DOI: 10.1016/j.finel.2005.11.003


Articles with similar content:

DEVELOPMENT OF THREE-DIMENSIONAL ADAPTIVE MESH GENERATION FOR MULTISCALE APPLICATIONS
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 3
Lukasz Madej, Konrad Perzynski, Krzysztof Banas, Filip Kruzel
CONCURRENT ATOMISTIC-CONTINUUM MODEL FOR DEVELOPING SELF-CONSISTENT ELASTIC CONSTITUTIVE MODELING OF CRYSTALLINE SOLIDS WITH CRACKS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Somnath Ghosh, Subhendu Chakraborty, Jiaxi Zhang
IDENTIFYING MATERIAL PARAMETERS FOR A MICRO-POLAR PLASTICITY MODEL VIA X-RAY MICRO-COMPUTED TOMOGRAPHIC (CT) IMAGES: LESSONS LEARNED FROM THE CURVE-FITTING EXERCISES
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 4
Ghonwa Khaddour, SeonHong Na, Simon Salager, Kun Wang, WaiChing Sun
NONLINEAR MULTISCALE HOMOGENIZATION OF CARBON NANOTUBE REINFORCED COMPOSITES WITH INTERFACIAL SLIPPAGE
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 4
Dimitris Savvas, Vissarion Papadopoulos
A Stochastic Nonlocal Model for Materials with Multiscale Behavior
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Jianxu Shi, Roger Ghanem