ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v3.i4.10
pages 393-413

Generalized Mathematical Homogenization of Atomistic Media at Finite Temperatures

Jacob Fish
Civil Engineering and Engineering Mechanics, Columbia University, New York, New York 10027, USA
Wen Chen
Rensselaer Polytechnic Institute, Troy, NY 12180
Yuye Tang
Rensselaer Polytechnic Institute, Troy, NY 12180

要約

In this manuscript, we derive thermomechanical continuum equations directly from molecular dynamics using the generalized mathematical homogenization (GMH) theory. GMH is a space-time multiple-scale asymptotic expansion method, which constructs the coupled atomistic unit-cell problem and the coarse-scale (continuum) problem. The fine-scale problem derived can be interpreted as a molecular dynamics problem on a unit cell, subjected to the coarse-scale fields including macroscopic deformation gradient and temperature. The coarse-scale problem derived is a constitutive law-free continuum thermomechanical equation, which calculates the overall stress and thermal flux vector directly from atomistics. Numerical experiments have been conducted to verify the formulation against the reference molecular dynamics solution. Attention is restricted to one-dimensional problems.


Articles with similar content:

Computational Evaluation of Strain Gradient Elasticity Constants
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
N. A. Fleck, R. H. J. Peerlings
Computational Homogenization of Nonlinear Hydromechanical Coupling in Poroplasticity
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 5-6
Fernando A. Rochinha, Marcio A. Murad, Jesus A. Luizar-Obregon
THERMAL EXPANSION BEHAVIOR OF Al AND Ta USING AFINITE-TEMPERATURE EXTENSION OF THE QUASICONTINUUM METHOD
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 1
Michael Ortiz, Jaime Marian, G. Campbell, Jaroslaw Knap, Gabriela Venturini
MICROMORPHIC TWO-SCALE MODELLING OF PERIODIC GRID STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 2
Hans-Georg Sehlhorst, Alexander Duster, Ralf Janicke, Stefan Diebels
THERMODYNAMICALLY CONSISTENT APPROACH FOR ONE-DIMENSIONAL PHENOMENOLOGICAL MODELING OF SHAPE MEMORY ALLOYS
International Journal for Multiscale Computational Engineering, Vol.17, 2019, issue 4
Y. Charles Lu, Chetan S. Jarali, S. Raja, Ravishankar N. Chikkangoudar, Jacob Fish, Subhas F. Patil