ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i3.40
pages 305-326

ELASTIC AND ELECTRICAL BEHAVIOR OF SOME RANDOMMULTISCALE HIGHLY-CONTRASTED COMPOSITES

Francois Willot
MINES-ParisTech, Centre de Morphologie Mathématique, Mathématiques et Systémes, France
Dominique Jeulin
MINES-ParisTech, Centre de Morphologie Mathématique, Mathématiques et Systémes, France

要約

The role of a non uniform distribution of heterogeneities on the elastic as well as electrical properties of composites is studied numerically and compared with available theoretical results. Specifically, a random model made of embedded Boolean sets of spherical inclusions (see, e.g., Proc. Eur. Conf. on Constitutive Models for Rubber, ECCMR 2007, Paris, Sept. 4-7) serves as the basis for building simple two-scale microstructures of \granular" type. Materials with infinitely contrasted properties are considered, i.e., inclusions elastically behave as rigid particles or pores, or as perfectly insulating or highly conducting heterogeneities. The inclusion spatial dispersion is controlled by the ratio between the two characteristic lengths of the microstructure. The macroscopic behavior as well as the local response of composites are computed using full-field computations, carried out with the fast fourier transfor method (C. R. Acad. Sci. Paris II, 318: 1417-1423, 1994). The entire range of inclusion concentrations and dispersion ratios up to the separation of length scales are investigated. As expected, the non uniform dispersion of inhomogeneities in multi scale microstructures leads to increased reinforcing or softening effects compared to the corresponding one-scale model (Willot and Jeulin, 2009); these effects are, however, still significantly far apart from Hashin-Shtrikman bounds. Similar conclusions are drawn regarding the electrical conductivity.


Articles with similar content:

The Effective Stagnant Thermal Conductivity of Porous Media with Periodic Structures
Journal of Porous Media, Vol.2, 1999, issue 1
Chin-Tsau Hsu, Ping Cheng
COMPUTATIONAL PREDICTION OF RADIATIVE PROPERTIES OF POLYMER CLOSED-CELL FOAMS WITH RANDOM STRUCTURE
Journal of Porous Media, Vol.16, 2013, issue 2
Jaona Harifidy Randrianalisoa, Dominique Baillis, Remi Coquard
COMPUTATIONAL PREDICTION OF RADIATIVE PROPERTIES OF POLYMER CLOSED-CELL FOAMS WITH RANDOM STRUCTURE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Jaona Harifidy Randrianalisoa, Dominique Baillis, Remi Coquard
Multiscale Mechanics of Nonlocal Effects in Microheterogeneous Materials
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
Valeriy A. Buryachenko
Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri