ライブラリ登録: Guest
International Journal for Multiscale Computational Engineering

年間 6 号発行

ISSN 印刷: 1543-1649

ISSN オンライン: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

AN ELASTOPLASTIC MULTISCALE, MULTIPHYSICS MIXED GEOMECHANICAL MODEL FOR OIL RESERVOIRS USING ADAPTIVE MESH REFINEMENT METHODS

巻 17, 発行 4, 2019, pp. 385-409
DOI: 10.1615/IntJMultCompEng.2019029774
Get accessGet access

要約

Simulation of fluid flow and deformation of porous media are important steps in the management and development of petroleum reservoirs. Fluid flow in an oil reservoir occurs on a wide range of scales. Due to the fact that simulating with respect to all the scales in multiple physical media exceeds current computational capabilities, the multiscale multiphysics mixed geomechanical model (M3GM) has been recently developed. Solid deformation is important in simulation of fluid pattern, petroleum production strategy, and protection of the uppermost equipment. In this paper, an elastoplastic model is added to M3GM, to increase the accuracy of M3GM in the simulation of solid deformation. Also, the mesh dimension is refined adaptively at some parts of the solid phase, according to the density of input data and concluded results. Finally, the model predictions are compared with the other simulations, and reasonable agreements are obtained.

参考
  1. Aarnes, J.E., On the Use of a Mixed Multiscale Finite Element Method for Greater Flexibility and Increased Speed or Improved Accuracy in Reservoir Simulation, Multiscale Model. Simul., vol. 2, no. 3, pp. 421-439, 2004. .

  2. Aarnes, J.E., Kippe, V., and Lie, K.A., Mixed Multiscale Finite Elements and Streamline Methods for Reservoir Simulation of Large Geomodels, Adv. WaterResour., vol. 28, no. 3, pp. 257-271, 2005. .

  3. Aarnes, J.E., Kippe, V., Lie, K.A., and Rustad, A.B., Modelling of Multiscale Structures in Flow Simulations for Petroleum Reservoirs, in Geometric Modelling, Numerical Simulation and Optimization Applied Mathematics at SINTEF, Berlin-Heidelberg: Springer, pp. 307-360,2007. .

  4. Aarnes, J.E. and Efendiev, Y., Mixed Multiscale Finite Element for Stochastic Porous Media Flows, SIAM Sci. Comput., vol. 30, no. 5, pp. 2319-2339, 2008. .

  5. Abdulle, A., Weinan, E., Engquist, B., and Vanden-Eijnden, E., The Heterogeneous Multiscale Method, Acta Numer., vol. 21, pp. 1-87,2012. .

  6. Almgren, A.S., Bell, J.B., and Colella, P., A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier Stokes Equations, J. Comput. Phys., vol. 46, no. 1, pp. 1-46, 1998. .

  7. Ariadji, T., Haryadi, F., Rau, I.T., Abdul Aziz, P., and Dasilfa, R., A Novel Tool for Designing Well Placements by Combination of Modified Genetic Algorithm and Artificial Neural Network, J. Pet. Sci. Eng., vol. 122, pp. 69-82, 2014. .

  8. Bank, R.E., Sherman, A.H., and Weisser, A., Refinement Algorithms and Data Structures for Regular Local Mesh Refinement, Math. Comput. Simul. Trans. IMACS, pp. 3-17, 1983. .

  9. Bell, J.B., Lijewski, M.J., Pau, G.S.H., and Almgren, A.S., A Parallel Second-Order Adaptive Mesh Algorithm for Incompressible Flow in Porous Media, Philos. Trans. R. Soc., A, vol. 367, pp. 4633-4654,2009. .

  10. Berger, M. and Oliger, J., Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations, J. Comput. Phys, vol. 53, pp. 484-512, 1984. .

  11. Bettaieb, M.B., Debordes, O., Dogui, A., and Duchene, L., Averaging Properties for Periodic Homogenization and Large Deformation, Int. J. Multiscale Comput. Eng., vol. 10, pp. 281-293, 2012. .

  12. Bevillon, D. and Masson, R., Stability and Convergence Analysis of Partially Coupled Schemes for Geomechanics Reservoir Simulations, in Proc. of 7th Eur. Conf. Math Oil Recovery, Baveno, Italy, 2000. .

  13. Brezzi, F., Hughes, T. J.R., Marini, L.D., and Masud, A., Mixed Discontinuous Galerkin Methods for Darcy Flow, J. Sci. Comput:., vol. 22, no. 1, pp. 119-145, 2005. .

  14. Brown, J.D. and Lowe, L.L., Multigrid Elliptic Equation Solver with Adaptive Mesh Refinement, J. Comput. Phys, vol. 209, no. 2, pp. 582-598,2005. .

  15. Carvalho, D.K.E., Willmersdorf, R.B., and Lyra, P.R., A Node-Centered Finite Volume Formulation for the Solution of Two-Phase Flows in Nonhomogeneous Porous Media, Int. J. Numer. Meth. Fluids, vol. 53, pp. 1197-1219, 2007. .

  16. Chen, W. and Fish, J., A Generalized Space-Time Mathematical Homogenization Theory for Bridging Atomistic and Continuum Scales, Int. J. Numer Methods Eng., vol. 67, pp. 253-271, 2006a. .

  17. Chen, W. and Fish, J., A Mathematical Homogenization Perspective of Virial Stress, Int. J. Numer Methods Eng., vol. 67, pp. 189-207, 2006b. .

  18. Chen, Z. and Hou, T.Y., A Mixed Multiscale Finite Element Method for Elliptic Problems with Oscillating Coefficients, Math. Comput., vol. 72, pp. 541-576, 2002. .

  19. Chen, X. and Yang, V., Thickness-Based Adaptive Mesh Refinement Methods for Multi-Phase Flow Simulations with Thin Regions, Comput. Phys., vol. 269, pp. 22-39, 2014. .

  20. Chiu, C.F. and Ng, C.W.W., A State-Dependent Elasto-Plastic Model for Saturated and Unsaturated Soils, Geotechnique, vol. 53, no. 9, pp. 809-829,2003. .

  21. Christie, M. and Blunt, M., Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques, SPE Reservoir Eval. Eng., vol. 4, pp. 308-317, 2001. .

  22. Cusini, M., Lukyanov, A., Natvig, J., and Hajibeygi, H., Constrained Pressure Residual Multiscale (CPR-MS) Method for Fully Implicit Simulation of Multiphase Flow in Porous Media, J. Comput. Phys, vol. 299, pp. 472-486, 2015. .

  23. Cusini, M., Kruijsdijk, C., and Hajibeygi, H., Algebraic Dynamic Multilevel (ADM) Method for Fully Implicit Simulations of Multiphase Flow in Porous Media, Comput. Phys., vol. 314, pp. 60-79,2016. .

  24. Cusini, M., Fryer, B., Kruijsdijk, C., and Hajibeygi, H., Algebraic Dynamic Multilevel Method for Compositional Flow in Hetero-geneous Porous Media, Comput. Phys., vol. 354, pp. 593-612, 2018. .

  25. Dafalias, Y. and Popov, E., A Model ofNonlinearly Hardening Materials for Complex Loading, ActaMech., vol. 21, pp. 173-192, 1975. .

  26. Dafalias, Y. and Popov, E., Plastic Internal Variables Formalism of Cyclic Plasticity, ASME J. Appl. Mech., vol. 43, pp. 645-651, 1976. .

  27. Dean, R.H., Gai, X., Stone, C.M., andMinkoff, S.E., A Comparison of Techniques for Coupling Porous Flow and Geomechanics, in SPE Reservoir Simul. Symp., Houston, TX, SPE paper 79709, 2003. .

  28. Dehkordi, M.M. and Manzari, M.T., Effects of Using Altered Coarse Grids on the Implementation and Computational Cost of the Multiscale Finite Volume Method, Adv. Water Resour., vol. 59, pp. 221-237, 2013. .

  29. D'Onza, F., Gallipoli, D., Wheeler, S., Casini, F., Vaunat, J., and Khalili, N., Benchmarking Different Approaches to Constitutive Modelling of Unsaturated Soils, Geotechnique, vol. 61, no. 4, pp. 283-302, 2010. .

  30. Efendiev, Y. and Hou, T.Y., Multiscale Finite Element Methods Theory and Applications, Series: Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4, New York: Springer, 2009. .

  31. Efendiev, Y., Hou, T.Y., and Wu, X.H., Convergence of a Nonconforming Multiscale Finite Element Method, SIAM J. Numer. Anal., vol. 37, pp. 888-910, 2000. .

  32. Efendiev, Y., Ginting, V., Hou, T. Y., and Ewing, R., Accurate Multiscale Finite Element Methods for Two-Phase Flow Simulations, J. Comput. Phys, vol. 220, no. 1, pp. 155-174, 2006. .

  33. Faigle, B., Helmig, R., Aavatsmark, I., and Flemisch, B., Efficient Multiphysics Modelling with Adaptive Grid Refinement Using a MPFA Method, Comput. Geosci, vol. 18, pp. 625-636, 2014. .

  34. Farias, M.M., Pinheiro, M., and Neto, M.P.C., An Elastoplastic Model for Unsaturated Soils under General Three-Dimensional Conditions, Soil Found., vol. 46, no. 5, pp. 613-628, 2006. .

  35. Fegh, A., Riahi, M.A., and Norouzi, G.H., Permeability Prediction and Construction of 3D Geological Model: Application of Neural Networks and Stochastic Approaches in an Iranian Gas Reservoir, Neural Comput. Appl., vol. 23, pp. 1763-1770,2013. .

  36. Fish, J., Chen, W., and Tang, Y., Generalized Mathematical Homogenization of Atomistic Media at Finite Temperatures, Int. J. Multiscale Comput. Eng., vol. 3, no. 4, pp. 393-413,2005. .

  37. Fish, J., Chen, W., and Li, R., Generalized Mathematical Homogenization of Atomistic Media at Finite Temperatures in Three Dimensions, Comput. Methods Appl. Mech. Eng., vol. 196, pp. 908-922, 2007. .

  38. Fish, J., Filonova, V., and Yuan, Z., Reduced Order Computational Continua, Comput. Methods Appl. Mech. Eng., vols. 221-222, pp. 104-116,2012. .

  39. Gallipoli, D., Gens, A., Sharma, R., and Vaunat, J., An Elasto-Plastic Model for Unsaturated Soil Incorporating the Effects of Suction and Degree of Saturation on Mechanical Behavior, Geotechnique, vol. 53, no. 1,pp. 123-135,2003. .

  40. Geiser, F., Laloui, L., and Vulliet, L., Elasto-Plasticity of Unsaturated Soils: Laboratory Test Results on a Remoulded Silt, Soil Found, vol. 46, no. 5, pp. 545-556, 2006. .

  41. Georgiadis, K., Potts, D.M., and Zdravkovic, L., Three-Dimensional Constitutive Model for Partially and Fully Saturated Soils, Int. J. Geomech, vol. 5, pp. 244-255,2005. .

  42. Ghasemzadeh, H. and Ghoreishian Amiri, S.A., A Hydro-Mechanical Elastoplastic Model for Unsaturated Soils under Isotropic Loading Conditions, Comput. Geotech., vol. 51, pp. 91-100, 2013. .

  43. Ghasemzadeh, H. and Sanaye Pasand, M., Modeling of Oil Transport in Porous Media Using Multiscale Method with Adaptive Mesh Refinement, in Energy Geotechnics, Berlin: Springer, pp. 475-485, 2018. .

  44. Ghasemzadeh, H., Sojoudi, M.H., Ghoreishian Amiri, S.A., and Karami, M.H., An Elastoplastic Model for Hydro-Mechanical Behavior of Unsaturated Soils, Soils Found., vol. 57, no. 3, pp. 371-383,2017. .

  45. Golub, G.H. and Van Loan, C.F., Matrix Computations, Baltimore, MD: The Johns Hopkins University Press, 2013. .

  46. Gutierrez, M., Lewis, R.W., and Masters, I., Petroleum Reservoir Simulation Coupling Fluid and Geomechanics, SPEReservoir Eval. Eng., vol. 4, pp. 164-171, 2001. .

  47. Hajibeygi, H. and Jenny, P., Multiscale Finite-Volume Method for Parabolic Problems Arising from Compressible Multiphase Flow in Porous Media, Comput. Phys, vol. 228, pp. 5129-5147, 2009. .

  48. Hajibeygi, H., Bonfigli, G., Hesse, M.A., and Jenny, P., Iterative Multiscale Finite-Volume Method, Comput. Phys., vol. 227, pp. 8604-8621,2008. .

  49. Hajibeygi, H. and Jenny, P., Adaptive Iterative Multiscale Finite Volume Method, J. Comput. Phys., vol. 230, pp. 628-643, 2011. .

  50. Hall, R., Gajendran, H., and Masud, A., Mixture Theory based Model for Diffusion of a Chemically Reacting Fluid through a Nonlinear Hyper-Elastic Solid, Math. Mech. Solids, vol. 20, no. 2, pp. 204-227, 2014. .

  51. Han, D., Yan, C., and Peng, L., A More Flexible Approach of Dynamic Local Grid Refinement for Reservoir Modeling, in Proc. of SPE Symp. on Reservoir Simulation, 1987. .

  52. Harnish, C., Matous, K., and Livescu, D., Adaptive Wavelet Algorithm for Solving Nonlinear Initial-Boundary Value Problems with Error Control, J. Multiscale Comput. Eng., vol. 16, no. 1, pp. 19-43, 2018. .

  53. Heinemann, Z., Gerken, G., and von Hantelmann, G., Using Local Grid Refinement in a Multiple-Application Reservoir Simulator, in Proc. of SPE Reservoir Simulation Symp., 1983. .

  54. Hicks, M.A., Coupled Computations for an Elastic-Perfectly Plastic Soil Using Adaptive Mesh Refinement, Int. J. Numer. Anal. Methods Geomech, vol. 24, pp. 453-476, 2000. .

  55. Hlepas, G., Turster, T., and Masud, A., A Heterogeneous Model for Porous Media Flows, Int. J. Numer. Methods Fluids, vol. 75, pp. 487-518,2014. .

  56. Hornung, R.D. and Trangenstein, J.A., Adaptive Mesh Refinement and Multilevel Iteration for Flow in Porous Media, J. Comput. Phys, vol. 136, pp. 522-545, 1997. .

  57. Hoteit, H. and Chawathe, A., Making Field-Scale Chemical EOR Simulations: A Practical Reality Using Dynamic Gridding, in Proc. of SPE EOR Conf. of Oil and Gas in West Asia, 2014. .

  58. Hughes, T.J.R., Multiscale Phenomena: Green's Functions, the Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods, Comput. Methods Appl. Mech. Eng., vol. 127, pp. 387-401,1995. .

  59. Hughes, T.J.R., Masud, A., and Wan, J., A Discontinuous Galerkin Finite Element Method for Darcy Flow, Comput. Methods Appl. Mech. Eng., vol. 195, pp. 2102-2137,2005. .

  60. Hughes, T. J.R., Scovazzi, G., and Franca, L.P., Multiscale and Stabilized Methods, in Encyclopedia of Computational Mechanics, vol. 2, New York: Wiley, 2017. .

  61. Jackson, F.K.M.D., Muggeridge, A.H., Mostaghimi, P., and Pain, C.C., A Dynamic Mesh Approach for Simulation of Immiscible Viscous Fingering, in Proc. of SPEReservoir Simulation Symp., pp. 23-25,2015. .

  62. Jenny, P., Lee, S.H., and Tchelepi, H.A., Multi-Scale Finite-Volume Method for Elliptic Problems in Subsurface Flow Simulation, Comput. Phys., vol. 187, pp. 47-67, 2003. .

  63. Jenny, P., Lee, S.H., and Tchelepi, H.A., Adaptive Multiscale Finite-Volume Method for Multiphase Flow and Transport in Porous Media, Multiscale Model. Simul., vol. 3, pp. 50-64,2004. .

  64. Jenny, P., Lee, S.H., and Tchelepi, H.A., Adaptive Fully Implicit Multi-Scale Finite-Volume Method for Multi-Phase Flow and Transport in Heterogeneous Porous Media, Comput. Phys, vol. 217, no. 2, pp. 627-641, 2006. .

  65. Juanes, R. and Patzek, T.W., A Variational Multiscale Finite Element Method for Multiphase Flow in Porous Media, Finite Elem. Anal. Des, vol. 41, nos. 7-8, pp. 763-777, 2005. .

  66. Kanoute, P., Boso, D.P., Chaboche, J.L., and Schrefler, B.A., Multiscale Methods for Composites: A Review, Arch. Comput. Methods Eng., vol. 16, pp. 31-75, 2009. .

  67. Kardani, M., Nazem, M., Abbo, A.J., Sheng, D., and Scott, W.S., Refined h-Adaptive Finite Element Procedure for Large Deformation Geotechnical Problems, Comput. Mech., vol. 49, pp. 21-33, 2012. .

  68. Kaydani, H., Mohebbi, A., and Eftekhari, M., Permeability Estimation in Heterogeneous Oil Reservoirs by Multi-Gene Genetic Programming Algorithm, J. Pet. Sci. Eng., vol. 123, pp. 201-206,2014. .

  69. Khalili, N., Habte, M., and Zargarbash, S., A Fully Coupled Flow Deformation Model for Cyclic Analysis of Unsaturated Soils Including Hydraulic and Mechanical Hystereses, Comput. Geotechnics, vol. 35, no. 6, pp. 872-889, 2008. .

  70. Khan, S., Trangenstein, J., Hornung, R., and Shilling, B., Application of Adaptive Mesh Refinement with a New High-Order Method in Simulation of a North Sea Micellar/Polymer Flood, in Proc. of iSPE Reservoir Simulation Symp., 1995. .

  71. Khoei, A.R., Gharehbaghi, S.A., Tabarraie, A.R., and Riahi, A., Error Estimation, Adaptivity and Data Transfer in Enriched Plasticity Continua to Analysis of Shear Band Localization, Appl. Math. Modell, vol. 31, pp. 983-1000, 2007. .

  72. Kim, Y., Jeong, S., and Kim, J., Coupled Infiltration Model of Unsaturated Porous Media for Steady Rainfall, Soils Found., vol. 56, no. 6, pp. 1071-1081,2016. .

  73. Lee, S.H., Wolfsteiner, C., and Tchelep, H.A., Multiscale Finite-Volume Formulation for Multiphase Flow in Porous Media: Black Oil Formulation of Compressible, Three-Phase Flow with Gravity, Comput. Geosci., vol. 12, pp. 351-366, 2008. .

  74. Lee, S., Wheeler, M.F., and Wick, T., Pressure and Fluid-Driven Fracture Propagation in Porous Media Using an Adaptive Finite Element Phase Field Model, Comput. Methods Appl. Mech. Eng., vol. 305, pp. 111-132, 2016. .

  75. Lewis, R.W. and Schrefler, B.A., Finite Element Method in the Static and Dynamics Deformation and Consolidation of Porous Media, 2nd ed., West Sussex, U.K.: Wiley, 1998. .

  76. Li, X.S., Thermodynamics-Based Constitutive Framework for Unsaturated Soils. 1: Theory, Geotechnique, vol. 57, no. 5, pp. 411-422, 2007a. .

  77. Li, X.S., Thermodynamics-Based Constitutive Framework for Unsaturated Soils. 2: A Basic Triaxial Model, Geotechnique, vol. 57, no. 5, pp. 423-435, 2007b. .

  78. Li, B. and Tchelepi, H.A., Nonlinear Analysis of Multiphase Transport in Porous Media in the Presence of Viscous, Buoyancy, and Capillary Forces, Comput. Phys, vol. 297, pp. 104-131, 2015. .

  79. Li, A., Li, R., and Fish, J., Generalized Mathematical Homogenization: From Theory to Practice, Comput. Methods Appl. Mech. Eng., vol. 197, nos. 41-42, pp. 3225-3248,2008. .

  80. Li, Y., Yao, J., Li, Y., Yin, C., Pan, B., Lee, J., and Dong, M., An Equivalent Continuum Approach for Modeling Two Phase Flow in Fractured Vuggy Media, J. Multiscale Comput. Eng., vol. 15, pp. 35-78, 2017. .

  81. Liao, W.K., Liu, Y., and Choudhary, A., A Grid-Based Clustering Algorithm using Adaptive Mesh Refinement, in Proc. of 7th Workshop on Mining Scientific and Engineering Datasets of SIAM International Conference on Data Mining, vol. 22, pp. 61-69, 2002. .

  82. Liu, C. and Muraleetharan, K., Coupled Hydro-Mechanical Elastoplastic Constitutive Model for Unsaturated Sands and Silts. I: Formulation, Int. J. Geomech., vol. 12, no. 3, pp. 239-247, 2012a. .

  83. Liu, C. and Muraleetharan, K., Coupled Hydro-Mechanical Elastoplastic Constitutive Model for Unsaturated Sands and Silts. II: Integration, Calibration, and Validation, Int. J. Geomech., vol. 12, no. 3, pp. 248-259, 2012b. .

  84. Lovett, S., Nikiforakis, N., and Monmont, F., Adaptive Mesh Refinement for Compressible Thermal Flow in Porous Media, Comput. Phys., vol. 280, pp. 21-36, 2015. .

  85. Lunati, I. and Jenny, P., Multiscale Finite-Volume Method for Compressible Multiphase Flow in Porous Media, Comput. Phys, vol. 216, pp. 616-636,2006. .

  86. Lunati, I. and Jenny, P., Treating Highly Anisotropic Subsurface Flow with the Multiscale Finite-Volume Method, Multiscale Model. Simul., vol. 6, pp. 308-318,2007. .

  87. Lunati, I. and Jenny, P., Multiscale Finite-Volume Method for Density-Driven Flow in Porous Media., Comput. Geosci., vol. 12, pp. 337-350, 2008. .

  88. Masin, D., Predicting the Dependency of a Degree of Saturation on Void Ratio and Suction Using Effective Stress Principle for Unsaturated Soils, Int. J. Numer. Anal. Methods Geomech., vol. 34, pp. 73-90, 2010. .

  89. Miller, G.A., Khoury, C.N., Muraleetharan, K.K., Liu, C., and Kibbey, T.C.G., Effects of Soil Skeleton Deformations on Hysteretic Soil Water Characteristic Curves: Experiments and Simulations, Water Resour. Res., vol. 44, p. W00C06, 2008. .

  90. Minion, M., A Projection Method for Locally Refined Grids, J. Comput. Phys., vol. 127, no. 1, pp. 158-178, 1996. .

  91. Ming, P.B. and Zhang, P.W., Analysis of the Heterogeneous Multiscale Method for Parabolic Homogenization Problems, Math. Comput, vol. 76, pp. 153-177, 2007. .

  92. Minkoff, S.E., Stone, C.M., Bryant, S., Peszynska, M., and Wheeler, M.F., Coupled Fluid Flow and Geomechanical Deformation Modeling, J. Pet. Sci. Eng., vol. 38, pp. 37-56, 2003. .

  93. Muraleetharan, K., Liu, C., Wei, C., Kibbey, T., and Chen, L., An Elastoplastic Framework for Coupling Hydraulic and Mechanical Behavior of Unsaturated Soils, Int. J. Plast., vol. 25, no. 3, pp. 473-490, 2009. .

  94. Nilsson, J., Gerritsen, M., and Younis, R., A Novel Adaptive Anisotropic Grid Framework for Efficient Reservoir Simulation, in Proc. of SPE Reservoir Simulation Symposium, 2005. .

  95. OPEC, World Oil Outlook 2013, J. Fantini, A.M. Aylward-Marchant, and K. Griffin, Eds., Vienna, Austria: Organization of the Petroleum Exporting Countries, 2013. .

  96. OPEC, World Oil Outlook 2014, K. Griffin and J. Fantini, Eds., Vienna, Austria: Organization of the Petroleum Exporting Countries, 2014. .

  97. Ortiz, M. and Quigley, J.J., Adaptive Mesh Refinement in Strain Localization Problems, Comput. Methods Appl. Mech. Eng., vol. 90, pp. 781-804, 1991. .

  98. Oskay, C. and Fish, J., Eigendeformation-Based Reduced Order Homogenization for Failure Analysis of Heterogeneous Materials, Comput. Methods Appl. Mech. Eng., vol. 196, pp. 1216-1243,2007. .

  99. Osorio, J.G., Chen, H.Y., and Teufel, L.W., Numerical Simulation of the Impact of Flow-Induced Geomechanics Response on the Productivity of Stress-Sensitive Reservoirs, in Proc. of SPE Reservoir Simulation Symp., Houston, TX, February 14-17,1999. .

  100. Pau, G.S.H., Bell, J.B., Almgren, A.S., Fagnan, K., and Lijewski, M.J., An Adaptive Mesh Refinement Algorithm for Compressible Two-Phase Flow in Porous Media, Comput. Geosci., vol. 16, pp. 577-592, 2012. .

  101. Phillips, P.J. and Wheeler, M.F., A Coupling of Mixed and Continuous Galerkin Finite Element Methods for Poroelasticity I: The Continuous in Time Case, Comput. Geosci., vol. 11, pp. 131-144, 2007a. .

  102. Phillips, P.J. and Wheeler, M.F., A Coupling of Mixed and Continuous Galerkin Finite Element Methods for Poroelasticity II: The Discrete-in-Time Case, Comput. Geosci., vol. 11, pp. 145-158, 2007b. .

  103. Pike, G., Semenzato, L., Colella, P., and Hilfinger, P.N., Parallel 3D Adaptive Mesh Refinement in Titanium, in Proc. of the SIAM Conference on Parallel Processing for Scientific Computing, 1999. .

  104. Popinet, S., An Accurate Adaptive Solver for Surface-Tension-Driven Interfacial Flows, J. Comput. Phys., vol. 228, pp. 5838-5866, 2009. .

  105. Sadrnejad, S.A., Ghasemzadeh, H., and Taheri, E., Multiscale Advance Features in Modeling Oil Transport in Porous Media, in Proc. of 21st Annual Intl. Conf. on Mechanical Engineering (ISME), Tehran, Iran, 2013. .

  106. Sadrnejad, S.A., Ghasemzadeh, H., Ghoreishian Amiri, S.A., and Montazeri, G.H., A Control Volume based Finite Element Method for Simulating Incompressible Two-Phase Flow in Heterogeneous Porous Media and Its Application to Reservoir Engineering, Pet. Sci., vol. 9, no. 4, pp. 485-497, 2014a. .

  107. Sadmejad, S.A., Ghasemzadeh, H., and Taheri, E., Multiscale Multiphysic Mixed Geomechanical Model in Deformable Porous Media, J. Multiscale Comput. Eng., vol. 12, no. 6, pp. 529-547, 2014b. .

  108. Sammon, P.H., Dynamic Grid Refinement and Amalgamation for Compositional Simulation, in Proc. of SPEReservoir Simulation Symp., pp. 21-23,2003. .

  109. Sheng, D., Sloan, S., and Gens, A., A Constitutive Model for Unsaturated Soils: Thermos Mechanical and Computational Aspects, Comput. Mech., vol. 33, pp. 453-465,2004. .

  110. Sun, D., Sheng, D., and Sloan, S., Elastoplastic Modelling of Hydraulic and Stress-Strain Behaviour of Unsaturated Soils, Mech. Mater., vol. 39, pp. 212-221, 2007. .

  111. Sun, D., Sun, W., and Xiang, L., Effect of Degree of Saturation on Mechanical Behavior of Unsaturated Soils and Its Elastoplastic Simulation, Comput. Geotech., vol. 37, no. 5, pp. 678-688,2010. .

  112. Taheri, E., Sadrnezhad, S.A., and Ghasemzadeh, H., Multiscale Geomechanical Model for a Deformable Oil Reservoir with Surrounding Rock Effects, Multiscale Comput. Eng., vol. 13, no. 6, pp. 533-559,2015. .

  113. Tavallali, M.S. andKarimi, I.A., Perspectives on the Design and Planning of Oil Field Infrastructure, in Proc. of Computer Aided Chemical Engineering, the 8th Intl. Conf. on Foundations of Computer, vol. 34, pp. 163-172, 2014. .

  114. Thu, T.M., Rahardjo, H., and Leong, E.C., Elastoplastic Model for Unsaturated Soil with Incorporation of the Soil-Water Characteristic Curve, Can. Geotech. J, vol. 44, no. 1, pp. 67-77, 2007. .

  115. Tchelepi, H.A., Jenny, P., Lee, S.H., and Wolfsteiner, C., Adaptive Multiscale Finite Volume Framework for Reservoir Simulation, SPE J., vol. 12, pp. 188-195, 2007. .

  116. Tomin, P. and Lunati, I., Local-Global Splitting for Spatiotemporal-Adaptive Multiscale Methods, Comput. Phys., vol. 280, pp. 214-231,2015. .

  117. Trangenstein, J.A., Adaptive Mesh Refinement for Wave Propagation in Nonlinear Solids, SIAM J. Sci. Stat. Comput., vol. 16, no. 4, p. 819, 1995. .

  118. Vaunat, J., Romero, E., and Jommi, C., An Elastoplastic Hydromechanical Model for Unsaturated Soils, International Workshop on Unsaturated Soils, in Experimental Evidence and Theoretical Approaches in Unsaturated Soils, A. Tarantino and C. Mancuso, Eds., London: Taylor & Francis, pp. 121-138, 2000. .

  119. Van Batenburg, D.W., De Zwart, A.H., Boerrigter, P.M., Bosch, M., and Vink, J.C., Application of Dynamic Gridding Techniques to IOR/EOR-Processes, SPE Reservoir Simulation Symposium, pp. 21-23, 2011. .

  120. Weinan, E., Engquist, B., and Huang, Z., Heterogeneous Multiscale Method: A General Methodology for Multiscale Modeling, Phys. Rev. B, vol. 67, no. 9, p. 092101,2003. .

  121. Wen, X.H., Durlofsky, L.J., and Edwards, M.G., Upscaling of Channel Systems in Two Dimensions Using Flow-Based Grids, Transport Porous Media, vol. 51, pp. 343-366, 2003. .

  122. Wheeler, S., Sharma, R., and Buisson, M., Coupling of Hydraulic Hysteresis and Stress-Strain Behavior in Unsaturated Soils, Geotechnique, vol. 53, no. 1, pp. 41-53, 2003. .

  123. Wong, K. and Masin, D., Coupled Hydro-Mechanical Model for Partially Saturated Soils Predictingsmall Strain Stiffness, Comput. Geotech, vol. 61, pp. 355-369, 2014. .

  124. Xie, Z., Pavlidis, D., Percival, J.R., Gomes, J.L.M.A., Pain, C.C., and Matar, O.K., Adaptive Unstructured Mesh Modelling of Multiphase Flows, Multiphase Flow, vol. 67, pp. 104-110, 2014. .

  125. Yan, H. and Oskay, C., Multi-Yield Surface Modeling of Viscoplastic Materials, J. Multiscale Comput. Eng., vol. 15, no. 2, pp. 121-142,2017. .

  126. Yao, J., Wang, C., Yang, Y., and Wang, W., Upscaling of Carbonate Rocks from Micropore Scale to Core Scale, J. Multiscale Comput. Eng., vol. 11, no. 5, pp. 497-504, 2013. .

  127. Yin, S., Rothenburg, L., and Dusseault, M.B., 3D Coupled Displacement Discontinuity and Finite Element Analysis of Reservoir Behavior during Production in Semi-Infinite Domain, Transp. Porous Media, vol. 65, pp. 425-441, 2006. .

  128. Yin, S., Dusseault, M.B., and Rothenburg, L., Coupled Multiphase Poroelastic Analysis of Reservoir Depletion Including Surrounding Strata, Int. J. Rock Mech. Min. Sci., vol. 44, pp. 758-766, 2007. .

  129. Yuan, Z. and Fish, J., Toward Realization of Computational Homogenization in Practice, Int. J. Numer. Methods Eng., vol. 73, no. 3, pp. 361-380,2008. .

  130. Yuan, Z. and Fish, J., Multiple Scale Eigendeformation-Based Reduced Order Homogenization, Comput. Methods Appl. Mech. Eng., vol. 198, pp. 2016-2038,2009. .

  131. Yuan, Z., Jiang, T., Fish, J., and Morscher, G., Reduced Order Multiscale-Multiphysics Model for Heterogeneous Materials, Int. J. Multiscale Comput. Eng., vol. 12, pp. 45-64, 2014. .

  132. Zhang, J., Chakraborty, S., and Ghosh, S., Concurrent Atomistic Continuum Model for Developing Self-Consistent Elastic Con-stitutive Modeling of Crystalline Solids with Cracks, J. Multiscale Comput. Eng., vol. 15, no. 2, pp. 99-119, 2017. .

  133. Zohdi, T.I., Homogenization Methods and Multiscale Modeling Part 2. Solids and Structures, vol. 2, in Encyclopedia of Compu-tational Mechanics, 2nd ed., New York: Wiley, pp. 407-430, 2004. .

によって引用された
  1. Ghasemzadeh Hasan, Mohsenzadeh Peyman, Shabani Khosro, Development of a four-node quadrilateral element-based high order numerical manifold method without linear dependency, International Journal for Computational Methods in Engineering Science and Mechanics, 22, 6, 2021. Crossref

  2. Ghasemzadeh Hasan, Babaei Saeed, Tesson Stéphane, Azamat Jafar, Ostadhassan Mehdi, From excess to absolute adsorption isotherm: The effect of the adsorbed density, Chemical Engineering Journal, 425, 2021. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain