ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002017
pages 565-578

NON-LOCAL COMPUTATIONAL HOMOGENIZATION OF PERIODIC MASONRY

Andrea Bacigalupo
Department of Civil, Environmental and Architectural Engineering, University of Genova, via Montallegro, 1-16145 Genova, Italy
Luigi Gambarotta
Department of Civil, Environmental and Architectural Engineering, University of Genova, via Montallegro, 1-16145 Genova, Italy

要約

Micro-polar and second-order homogenization procedures for periodic elastic masonry have been implemented to include geometric and material length scales in the constitutive equation. From the evaluation of the numerical response of the unit cell representative of the masonry to properly prescribed displacement boundary conditions related to homogeneous macro-strain fields, the elastic moduli of the higher-order continua are obtained on the basis of an extended Hill-Mandel macro-homogeneity condition. Elastic moduli and internal lengths for the running bond masonry are obtained in the case of Cosserat and second-order homogenization. To evaluate these results, a shear layer problem representative of a masonry wall subjected to a uniform horizontal displacement at points on the top is analyzed as a micro-polar and a second-order continuum and the results are compared to those corresponding with the reference heterogeneous model. From this analysis the second-order homogenization appears to provide better results in comparison with the micro-polar homogenization.

参考

  1. Bakhvalov, N. S. and Panasenko, G. P., Homogenization: Averaging Processes in Periodic Media.

  2. Boutin, C., Micro-structural effects in elastic composites. DOI: 10.1016/0020-7683(95)00089-5

  3. Bouyge, F., Jasiuk, I., and Ostoja-Starzewski, M., A micromechanically based couple-stress model of an elastic two-phase composite. DOI: 10.1016/S0020-7683(00)00132-3

  4. Bouyge, F., Jasiuk, I., Boccara, S., and Ostoja-Starzewski, M., A micromechanically based couple-stress model of an elastic orthotropic two-phase composite. DOI: 10.1016/S0997-7538(01)01192-5

  5. Casolo, S., Macroscopic modelling of structured materials: Relationship between orthotropic Cosserat continuum and rigid elements. DOI: 10.1016/j.ijsolstr.2005.03.037

  6. Feyel, F., A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. DOI: 10.1016/S0045-7825(03)00348-7

  7. Forest, S. and Sab, K., Cosserat overall modeling of heterogeneous materials. DOI: 10.1016/S0093-6413(98)00059-7

  8. Gambarotta, L. and Bacigalupo, A., Cosserat homogenization of elastic periodic blocky masonry.

  9. Germain, P., The method of virtual power in continuum mechanics. Part 2: Microstructure. DOI: 10.1137/0125053

  10. Kaczmarczyk, L., Pearce, C., and Bićanić, N., Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization. DOI: 10.1002/nme.2188

  11. Kouznetsova, V. G., Geers, M. G. D., and Brekelmans, W. A. M., Multi-scale second-order computational homogenization of multi-phase materials: A nested finite element solution strategy. DOI: 10.1016/j.cma.2003.12.073

  12. Mindlin, R. D., Micro-structure in linear elasticity. DOI: 10.1007/BF00248490

  13. Mistler, M., Anthoine, A., and Butenweg, C., In-plane and out-of-plane homogenisation of masonry. DOI: 10.1016/j.compstruc.2006.08.087

  14. Peerlings, R. H. J. and Fleck, N. A., Computational evaluation of strain gradient elasticity constants. DOI: 10.1615/IntJMultCompEng.v2.i4.60

  15. Salerno, G. and de Felice, G., Continuum modeling of periodic brickwork. DOI: 10.1016/j.ijsolstr.2008.10.034

  16. Smyshlyaev, V. P. and Cherednichenko, K. D., On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. DOI: 10.1016/S0022-5096(99)00090-3

  17. Sulem, J. and Mühlhaus, H. B., A continuum model for periodic two-dimensional block structures. DOI: 10.1002/(SICI)1099-1484(199701)2:1<31::AID-CFM24>3.0.CO;2-O

  18. Triantafyllidis, N. and Bardenhagen, S., The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models. DOI: 10.1016/0022-5096(96)00047-6

  19. Trovalusci, P. and Masiani, R., A multifield model for blocky materials based on multiscale description. DOI: 10.1016/j.ijsolstr.2005.03.027

  20. Van der Sluis, O., Vosbeek, P. H. J., Schreurs, P. J. G., and Meijer, H. E. H., Homogenization of heterogeneous polymers. DOI: 10.1016/S0020-7683(98)00144-9


Articles with similar content:

DISCRETE ELEMENT MODEL FOR IN-PLANE LOADED VISCOELASTIC MASONRY
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 2
Daniele Baraldi, Antonella Cecchi
NONLINEAR BEHAVIOR OF MASONRY WALLS: FE, DE, AND FE/DE MODELS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 3
Daniele Baraldi, Emilio Meroi, Antonella Cecchi, Emanuele Reccia, Claudia Brito de Carvalho Bello
A MULTIPHASE HOMOGENIZATION MODEL FOR THE VISCOPLASTIC RESPONSE OF INTACT SEA ICE: THE EFFECT OF POROSITY AND CRYSTALLOGRAPHIC TEXTURE
International Journal for Multiscale Computational Engineering, Vol.17, 2019, issue 2
Pedro Ponte Castaneda, Shuvrangsu Das
A MODEL FOR COMPOSITE BRICKWORK-LIKE MATERIALS BASED ON DISCRETE ELEMENT PROCEDURE: SENSITIVITY TO DIFFERENT STAGGERED TIERS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.3, 2012, issue 1
Antonella Cecchi
Size of a Representative Volume Element in a Second-Order Computational Homogenization Framework
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Marc Geers, W. A. M. Brekelmans, Varvara G. Kouznetsova