ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i5.70
pages 523-533

Numerical Modeling of Dielectric Breakdown in Solid Propellant Microstructures

Stany Gallier
SNPE Materiaux Energetiques, Vert-le-Petit, France

要約

This study addresses the industrial issue of dielectric breakdown in aluminized solid propellants. Direct simulations at the microscale level are performed by considering monodisperse hard sphere systems obtained by a packing algorithm. Steady Maxwell equations are solved using a finite differences technique, and breakdown dynamics is modeled by a quasi-steady succession of local breakdowns between particles. Validations of the numerical procedure are successfully carried out on the prediction of the effective electrical conductivity of random suspensions of spheres. Computations of the breakdown field for monodisperse random dispersions accurately match some experimental data as well as an existing mixture law based on the mean nearest-neighbor distance. This mixture law is then applied to four industrial propellants, for which realistic microstructures have been generated and breakdown experimental are data available. It appears that this law is reasonably accurate to predict the breakdown strength of real solid propellants.

参考

  1. Araujo, F. and Rosenberg, H., Switching behaviour and DC electrical conductivity of epoxy-resin/metal-powder composites. DOI: 10.1088/0022-3727/9/6/015

  2. Beale, P. D. and Duxbury, P. M., Dielectric breakdown in metalloaded dielectrics. DOI: 10.1103/PhysRevB.37.2785

  3. Berryman, J. G., Random close packing of hard spheres and discs. DOI: 10.1103/PhysRevA.27.1053

  4. Bonnecaze, R. T. and Brady, J. F., The effective conductivity of random suspensions of spherical particles. DOI: 10.1098/rspa.1991.0025

  5. Bruggeman, D., Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. DOI: 10.1002/andp.19354160705

  6. Campo, M. A., Woo, L. Y., Mason, T. O., and Garboczi, E. J., Frequency-dependent electrical mixing law behavior in spherical particle composites. DOI: 10.1023/A:1021642118889

  7. Davenas, D. and Rat, R., Sensitivity of solid rocket motors to electrostatic discharge: History and future. DOI: 10.2514/2.6003

  8. Duxbury, P. M., Beale, P. D., and Leath, P. L., Size effects of breakdown in quenched random media. DOI: 10.1103/PhysRevLett.57.1052

  9. Duxbury, P. M., Beale, P. D., Bak, H., and Schroeder, P. A., Capacitance and dielectric breakdown of metal-loaded dielectrics. DOI: 10.1088/0022-3727/23/12/010

  10. Feitosa, K., Marze, S., Saint-Jalmes, A., and Durian, D. J., Electrical conductivity of dispersions: From dry foams to dilute duspensions. DOI: 10.1088/0953-8984/17/41/001

  11. Gallier, S. and Hiernard, F., Microstructure of composite propellants using simulated packings and X-Ray tomography. DOI: 10.2514/1.30454

  12. Gallier, S. and Guery, J. F., Regression fronts in random sphere packs: Application to composite solid propellant burning rate. DOI: 10.1016/j.proci.2008.06.017

  13. Gyure, M. F. and Beale, P. D., Dielectric breakdown of a random array of conducting cylinders. DOI: 10.1103/PhysRevB.40.9533

  14. Gyure, M. F. and Beale, P. D., Dielectric breakdown in continuous models of metal-loaded dielectrics. DOI: 10.1103/PhysRevB.46.3736

  15. Jodrey, W. S. and Tory, E. M., Computer simulation of close random packing of equal spheres. DOI: 10.1103/PhysRevA.32.2347

  16. Kent, R. and Rat, R., Static electricity phenomena in the manufacture and handling of solid propellants. DOI: 10.1016/0304-3886(85)90048-8

  17. Kent, R., Phènomènes d’èlectricitè statique dans les propergols solides.

  18. Larson, R. W., Beale, P. D, Curry, J. D., Eriksen, F., Frisoni, M. F., and Gyure, M. F., Microstructural modeling of electrical breakdown in solid fuel propellants.

  19. Lubachevsky, B. D. and Stillinger, F. H., Geometric properties of random disk packings. DOI: 10.1007/BF01025983

  20. Meredith, R. E. and Tobias, C. W., Conductivities in emulsion. DOI: 10.1149/1.2428064

  21. Ottavi, H., Clerc, C., Giraud, G., Roussenq, J., Guyon, E., and Mitescu, C., Electrical conductivity of a mixture of conducting and insulating spheres: An Application of Some Percolation Concepts. DOI: 10.1088/0022-3719/11/7/021

  22. Scher, H. and Zallen, R., Critical density in percolation processes. DOI: 10.1063/1.1674565

  23. Sunderaj, V. E., Curry, J. D., and Larson, R. W., Modeling of electrostatic fields in solid propellants using finite element techniques. DOI: 10.1109/NSEMC.1989.37164

  24. Sussman, M., Smereka, P., and Osher, S., A level-set approach for computing solution to incompressible two-phase flow. DOI: 10.1006/jcph.1994.1155

  25. Torquato, S., Nearest-neighbor statistics for packings of hard spheres and disks. DOI: 10.1103/PhysRevE.51.3170

  26. Torquato, S., Random Heterogeneous Materials.

  27. Turner, J. C., Two-phase conductivity: The electrical conductance of liquid-fluidized beds of spheres. DOI: 10.1016/0009-2509(76)80034-6

  28. Vertruyen, B., Cloots, R., Ausloos, M., Fagnard, J.-F., and Vanderbemden, P., Electrical transport and percolation in magnetoresistive manganite/insulating oxide composites: Case of La0.7Ca<sub>0.3</sub>MnO<sub>3</sub>/Mn<sub>3</sub>O<sub>4</sub>. DOI: 10.1103/PhysRevB.75.165112


Articles with similar content:

SIZE EFFECT OF ALUMINUM NANO-PARTICLES ON HTPB/AP PROPELLANT COMBUSTION
International Journal of Energetic Materials and Chemical Propulsion, Vol.6, 2007, issue 5
Olivier Orlandi, Dominique Lambert, Jean-Francois Trubert
A POROUS MODEL FOR THE INTERPRETATION OF MERCURY POROSIMETRY TESTS
Journal of Porous Media, Vol.15, 2012, issue 6
Eduardo Rojas, Julio Leal, Maria de la Luz Perez-Rea, Gustavo Gallegos
ANALYZING SELF-IGNITION IN RAPIDLY COMPRESSED TURBULENCE
TSFP DIGITAL LIBRARY ONLINE, Vol.8, 2013, issue
Guillaume Lodier , Pascale Domingo, Luc Vervisch
On the Calculation of the Force Acting Upon a Moving Charge in a Cylindrical Drift Tube
Telecommunications and Radio Engineering, Vol.63, 2005, issue 7-12
T. Yu. Yatsenko, K. V. Ilyenko, G. M. Gorbik
AN ENERGY BASED FAILURE CRITERION FOR USE WITH PERIDYNAMIC STATES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 6
John T. Foster, Weinong Chen, Stewart A. Silling