ライブラリ登録: Guest
International Journal for Multiscale Computational Engineering

年間 6 号発行

ISSN 印刷: 1543-1649

ISSN オンライン: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

PREFACE: MULTISCALE COMPUTATIONAL ANALYSIS OF COMPLEX MATERIALS

巻 16, 発行 4, 2018, pp. v-vi
DOI: 10.1615/IntJMultCompEng.2018027912
Get accessDownload

要約

Complex materials play an essential role in many applications, ranging from turbine blades, car chassis, computer and cell phone cases, battery systems, stretchable and wearable electronics, to biomedical applications. Those materials often operate and must maintain their high performance in harsh environments. The advancement of computational methods at multiple scales opens new possibilities for the design of such complex materials and the optimization of their intrinsic properties under extreme events. The bridging of different length and time scales though still represents an area of active research with many unresolved challenges. For example, material degradation is considered as a typical multiscale process, controlled by nanoscale defects, highly affecting the macroscopic material response. In order to discuss the methods of modelling of multiphysics aspects of complex materials behaviour, the International Symposium on Multiscale Computational Analysis of Complex Materials was organized at 29-31. August 2017, at the Technical University of Denmark/DTU, Copenhagen. The Symposium Topics included Multiscale multiphysics modeling of materials, computational materials science, micromechanics of materials, scale bridging and homogenization, materials under extreme environments, hierarchical, biological and natural materials, nanomaterials. Several selected papers from this symposium are presented in this issue of the journal.

キーワード: Editorial, symposium
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain