ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2017020322
pages 323-342

MICRO-MACRO RELATIONSHIPS FROM DISCRETE ELEMENT SIMULATIONS OF SINTERING

Jerzy Rojek
Department of Computational Science, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
Szymon Nosewicz
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
Marcin Chmielewski
Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw, Poland

要約

A two-scale modeling framework for sintering processes has been presented. Formulation of the micromechanical model of sintering developed in the discrete element method and basic relationships in the macroscopic model of sintering have been briefly reviewed. The methodology to determine macroscopic quantities–stress, strains, and constitutive viscous properties-from the discrete element simulations has been presented. This methodology has been applied to modeling of NiAl sintering. First, the discrete element model (DEM) has been calibrated by fitting the numerical densification curve to the experimental data. The DEM model with calibrated parameters has been used in simulations specially conceived to give macroscopic viscous moduli of the sintered material. Using the averaging procedures macroscopic stresses and strains have been calculated. Strain rates have been obtained differentiating the strain curves with respect to time. Finally, the viscous constitutive properties of the sintered material have been determined. The dependence of the shear and volumetric viscous moduli on the relative density (or equivalently) on the porosity has been obtained. It has been found that the numerical simulations predict a similar dependence as that assumed in the phenomenological macroscopic models. Thus, the validity of the micro-macro relationships obtained from the discrete element simulations of powder sintering has been confirmed. The proposed methodology allows us to use the discrete element model in the framework of multiscale modeling of sintering.


Articles with similar content:

INVESTIGATION OF MICRO-MACROSCALE INTERACTION OF HETEROGENEOUS MATERIALS BY A PARALLEL-BONDED PARTICLE MODEL AND INTRODUCTION OF NEW MICROPARAMETER DETERMINATION FORMULATIONS
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 1
Abdulkadir Cevik, Serkan Nohut
ON THE HOMOGENEITY HYPOTHESIS, SCALE PARAMETERS OF LENGTH, AND ON THE EDGE EFFECT FOR THE ISOTROPIC COSSERAT CONTINUUM
Composites: Mechanics, Computations, Applications: An International Journal, Vol.2, 2011, issue 1
A. A. Adamov
COMPUTATIONAL HOMOGENIZATION METHOD AND REDUCED DATABASE MODEL FOR HYPERELASTIC HETEROGENEOUS STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 3
Julien Yvonnet, Qi-Chang He, Eric Monteiro
EXACT SOLUTION FOR FREE VIBRATION ANALYSIS OF FUNCTIONALLY GRADED MICROPLATES BASED ON THE STRAIN GRADIENT THEORY
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 6
H. Farahmand , S. S. Naseralavi, A. Iranmanesh, M. Mohammadi
Application of a Dewatering Model for Fibroporous Media under Constrained Uniaxial Compression
Journal of Porous Media, Vol.8, 2005, issue 5
Jeffrey G. Lounghran, Mei Duan