ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Computational Thermal Sciences: An International Journal
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 0.7

ISSN 印刷: 1940-2503
ISSN オンライン: 1940-2554

Computational Thermal Sciences: An International Journal

DOI: 10.1615/ComputThermalScien.v1.i4.40
pages 425-440

NATURAL CONVECTION OF NANOFLUIDS IN A CAVITY INCLUDING THE SORET EFFECT

Rachid Bennacer
L2MGC F-95000, University of Cergy-Pontoise, 95031 Cergy-Pontoise Cedex, Paris, France; ENS-Cachan Dpt GC/LMT/CNRS UMR 8535, 61 Ave. du Président Wilson, 94235 Cachan Cedex, France; Tianjin Key Lab of Refrigeration Technology, Tianjin University of Commerce, 300134
Mohammed El Ganaoui
Sciences des Procedes Ceramiques et des Traitements de Surface (SPCTS), UMR CNRS 6638, Faculte des Sciences de Limoges 123, av. A. Thomas - 87060 Limoges Cedex
Thierry Mare
INSA de Rennes, LGCGM, IUT Saint Malo, France
Cong Tam Nguyen
Faculty of Engineering, Universite de Moncton, Moncton, New Brunswick, Canada E1A 3E9

要約

Convection of a binary mixture in a cavity is studied numerically. The flow is driven by a buoyancy force due to an externally applied constant temperature difference on the vertical wall of the cavity, while the horizontal surfaces are impermeable and adiabatic. A nanofluid is used and the effects of the cross phenomenon "Soret effect" were considered in the analysis. The flows are found to be dependent on the particle concentration φ, the Rayleigh number RaT, the Lewis number Le, the solutal to thermal buoyancy ratio N, and the thermal boundary conditions. Numerical results for finite amplitude convection, obtained by solving numerically the full governing equations, are found to be in good agreement with the analytical solution based on the scale analysis approach. We have proposed a modified formulation of the conservation equations governing the flow and heat transfer of nanofluids, taking into account important changes of nanofluid thermal conductivity and viscosity as well as the spatial change of the particle concentration that is induced by the Soret effect. Results have shown that such an effect increases nanofluid heat transfer. The optimal particle volume concentration, which maximizes heat transfer, is estimated to be 2%. The increase of natural convection with nanoparticle concentration is weak in comparison to that found in forced convection.


Articles with similar content:

NATURAL CONVECTION AND HEAT TRANSFER OF NANOFLUIDS CONSIDERING THE SORET EFFECT
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
T. Nguyen, Thierry Mare
NATURAL CONVECTION HEAT TRANSFER IN A NANOFLUID-FILLED HORIZONTAL LAYER WITH SINUSOIDAL WALL TEMPERATURE AT THE BOTTOM BOUNDARY
Heat Transfer Research, Vol.49, 2018, issue 11
Qiu-Wang Wang, H. Ozoe, Z. L. Fan, G. Wang, Min Zeng
NUMERICAL SIMULATION OF MIXED CONVECTION IN A SiO2/WATER NANOFLUID IN A TWO−SIDED LID-DRIVEN SQUARE ENCLOSURE WITH SINUSOIDAL BOUNDARY CONDITIONS ON THE WALL
Heat Transfer Research, Vol.45, 2014, issue 7
Seyed Sadegh Mirtalebi Esforjani, Mohammad Hadi Hajmohammad, Mohammad Akbari, Mohammad Hemmat Esfe
THE USE OF THERMODIFFUSION IN CONSTITUENT SEPARATION IN POROUS MEDIA: MULTI-DOMAIN TECHNIQUES
ICHMT DIGITAL LIBRARY ONLINE, Vol.11, 2004, issue
J. Sicard
SIMULATION OF NATURAL CONVECTION OF NANOFLUIDS AT HIGH RAYLEIGH NUMBERS: A TWO-COMPONENT LATTICE BOLTZMANN STUDY
Computational Thermal Sciences: An International Journal, Vol.8, 2016, issue 1
Mehdi Hosseini Abadshapoori, Mohammad Hassan Saidi