ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.737 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 30, 2020 巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v16.i8.40
pages 907-932

DEVELOPMENT OF LIQUID JET ATOMIZATION AND BREAKUP MODELS INCLUDING TURBULENCE EFFECTS

H. P. Trinh
NASA-Marshall Space Flight Centre, Huntsville, USA
C. P. Chen
Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA

要約

Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. Two widely used models, the Kelvin-Helmholtz instability of Reitz [8] (the blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O'Rourke and Amsden [9], are further extended to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force, acted on parent drops, is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. This article describes theoretical development and assessment of the current models, called T-blob and T-TAB, for primary and secondary breakup, respectively.


Articles with similar content:

A NUMERICAL STUDY FOR THE EFFECT OF DROP BREAKUP ON THE SPRAY CHARACTERISTICS
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
K.B. Hong, Hong Sun Ryou, H.C. Yang, Young Ki Choi
MATHEMATICAL MODELING AND EXPERIMENTAL VERIFICATION OF INTERIOR GAS-LIQUID FLOWS AND OUTFLOW ATOMIZATION PROCESS FOR Y-JET NOZZLES
Atomization and Sprays, Vol.14, 2004, issue 5
Yubao Song, Mingchuan Zhang
THREE-DIMENSIONAL SIMULATION OF EFFERVESCENT ATOMIZATION SPRAY
Atomization and Sprays, Vol.19, 2009, issue 1
Jian-Zhong Lin, Ze-Fei Zhu, Hong-Bing Xiong
TRANSIENT COOLING WITH SOLIDIFICATION OF A THERMODEPENDANT YIELD STRESS FLUID FLOWING IN A DUCT
ICHMT DIGITAL LIBRARY ONLINE, Vol.8, 1996, issue
Michel Lebouche, K. Javaherdeh, C. Nouar, R. Devienne
IMPACT WAVE-BASED MODEL OF IMPINGING JET ATOMIZATION
Atomization and Sprays, Vol.16, 2006, issue 7
Robert J. Santoro, Harry M. Ryan, III, William E. Anderson